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Abstract

Migration is a crucial step in seismic data processing. Improving the computational
efficiency of migration is very important because of the high cost associated to
migrate seismic data. In this thesis, we discuss application of time-frequency analysis
techniques to the problem of seismic data migration and propose two new methods
which enable us to perform fast migration by using a few elements of the compressed

data space.

In particular, we examine two different problems. First, we present an algo-
rithm to migrate seismic data which have been filtered using wavelet transform. The
wavelet transform is used to isolate the energy that need to be migrated. This fast
| migration algorithm is suitable for time migration. Our second approach entails the
application of the matching pursuit algorithm to migrate post and prestack data.
This algorithm is suitable for depth migration. In this case, the seismic energy that
contributes to the migrate image is first located by means of a matching pursuit
algorithm. The latter permits us to migrate only a few strong arrivals per trace
instead of migrating the complete data volume. The approach speeds up the con-
ventional matching pursuit depth migration by using searching and sorting methods

to invert the associated travel time tables.
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CHAPTER 1

Introduction

1.1 Background and motivation

Seismic methods play a prominent role in the search for hydrocarbons. The basic
equipment for reflection seismic prospecting is a source, a receiver, and a multichan-
nel waveform display system. A survey line is defined along the earth’s surface. The
source sends out impulsive sound waves, which are reflected upon subsurface layers.
The receiver is used to receive the echoes of sound waves reflected from subsurface
layers. The echoes can arrive to receivers from several directions at the same time.
A layered material may be specified according to the reflection strength found on a
record. Therefore, seismic records provide a way for geophysicists and geologists to

study the earth’s interior.

Seismic data processing entails the use of computers for the analysis of seis-
mic data. The primary stages in seismic data processing are Deconvolution, Stack-
ing, and Migration. Deconvolution acts along the time axis. It removes the seis-
mic wavelet (the source time function modified by various effects of the earth and
recording system) from the recorded seismic trace and thereby increases temporal
resolution. Deconvolution achieves this goal by compressing the wavelet. Stacking
also is a process of compression. In particular, the data volume is reduced to a plane
of midpoint-time at zero offset (source and receiver are on the same location). The

result is a stacked section. Migration is commonly applied to stacked data as a final



procedure. Migration is a spatial deconvolution process that moves the reflection
events from seismic time records to their correct spatial locations. Because of its sig-
nificance in interpretation, many advanced migration methods have been proposed
in the past couple of decades. Migration can now be performed in different domains.

such as space-time, space—frequency, wavenumber-time, or wavenumber—frequency

(Claerbout, 1985).

Kirchhoff migration is often implemented in the z —¢ domain. This technique
is based on the wave equation. This method is widely used in the oil and gas industry
as a result of its accuracy and low cost. More important, it is more versatile than

any other migration method because it allows us to migrate the complete data or a

subset of it.

There are two flavors of Kirchhoff migration: input and output based migra-
tion. Input based migration can be highly optimized by using compressed data as
input. However, the situation is different for output based migration. The motiva-
tion of this thesis is to find efficient methods to perform Kirchhoff migration (input
and output based) in compressed data spaces. These are data compressed by some

compression technique (e.g. wavelet transform, a matching pursuit decomposition).

1.2 Scope and contribution of this work

The purpose of this thesis is to investigate new means to migrate seismic data. This
thesis will be focused on Kirchhoff migration. In particular, the applications of
Kirchhoff migration to data that have been compressed using the wavelet transform
or a matching pursuit decomposition algorithm are studied. The goal is to recover

the proper seismic image by using a few elements of the compressed data space.



This thesis also complements the work of Wang and Pann (1996) and Li et al.
(1998) in matching pursuit migration. These researchers have applied a matching
pursuit algorithm to migrate seismic data in the case where exists an analytical
expression for the migration operator (constant velocity and v(2) (lateral invariant

velocity) time migration).

1.3 Thesis outline

This thesis is organized as follows:

In Chapter 2, several important aspects of seismic data migration based
on the Kirchhoff integral are reviewed. This brief survey includes not only the
theoretical aspects but also various important practical aspects that are needed for

a proper numerical implementation.

In Chapter 3, I discuss the wavelet transform and introduce the concept of
migration of wavelet transform filtered data. In this new approach, the seismic data
are treated as a combination of horizontal events and dipping events. The wavelet
transform is used as a tool to differentiate from the data the dipping events which
are considered to be the component that contributes to hyperbola summation in
migration. The new procedure allows us to find a way to properly migrate the

events that contribute to the image formation process.

In Chapter 4, a new technique is devised to migrate seismic data using Kirch-
hoff methods, but in this case the signal is decomposed using a less elegant algorithm
called matching pursuit decomposition. This algorithm is used to represent the seis-
mic data as a superposition of isolated sources which can be migrated one at the

time. The advantage is that migration is carried out on a subset of the complete data



set, the compressed space, and, therefore, the computational cost of the migration

algorithm is reduced.

In the final chapter, I provide a summary of the techniques developed in this

thesis. Applications that are worth further study are also discussed.



CHAPTER 2

Kirchhoff Migration

2.1 Background

Migration reveals the true structure of the subsurface of the earth. Up to the late
1960s, this was achieved by manual methods on a few picked horizons using ray
tracing and timing calculations (Hagedoorn, 1954). Then around 1970 the first
‘diffraction stack’ migration methods became commercially available. They per-
form migration by summing the seismic amplitudes along a diffraction hyperbola
whose curvature is governed by the medium velocity. Again, these were based on
ray tracing concepts and scalar diffraction theory. In the 1970s several major de-
velopments took place. In particular, the diffraction stack method was put into
the context of the Kirchhoff integral theory rather than ray theory. The Kirch-
hoff summation technique is similar to diffraction summation, with the addition of
an amplitude and phase correction applied to the data before summation. These
corrections make the summation consistent with the wave equation in that they ac-
count for spherical spreading, obliquity factor, and the phase shift factor inherent to
Huygen’s secondary sources. Another development (Claerbout and Doherty, 1972)
was based on the idea that a stacked section can be modeled as an upcoming zero—
offset wavefield generated by exploding reflectors. Using that model, migration can
be conceptualized as consisting of wavefield extrapolation (in the form of downward

continuation) followed by imaging. Downward continuation of wavefields can be




implemented conveniently using finite-difference solutions to the scalar wave equa-
tion. Migration methods based on such implementation are called finite-difference
migration (Claerbout, 1985). After the developments on Kirchhoff summation and
finite-difference migration, Stolt (1978) introduced migration by Fourier transform.
This method involves a coordinate transformation from frequency (associated with
time axis) to vertical wavenumber axis (associated with depth), while keeping the
horizontal wavenumber unchanged. Another frequency-wavenumber migration is
the phase-shift method (Gazdag, 1978). This method is based on the idea that
downward continuation amounts to a phase shift in the frequency—-wavenumber do-
main. The existence of a range of seismic migration techniques can now adequately
solve most imaging problems. However this is not to imply that the appropriate mi-
gration is always used, but rather that for most imaging problems, the appropriate

migration tool has been developed.

Regardless what kind of migration method is used, the purpose is the same:
briefly stated, is to transform a seismic wavefield recorded at the earth’s surface (time
section) to an earth reflectivity map (depth section)!. This is done by collapsing
diffractions and mapping dipping events on a stacked section to their true subsurface
locations. Figure 2.1 shows that a dipping event 2,2, in subsurface is recorded in
a zero offset time section at another position 1¢,. It is clear that the reflection
segment t;t, does not present the true position of the dipping event. When the
seismic section is migrated, the segment ¢;{, is moved updip, steeped, shortened,
and mapped onto its true subsurface location 2;z,. Another migration example is
shown in Figure 2.2. Figure 2.2 (Top) is a synthetic zero-offset section that shows
three reflection events, a bowtie shape event, a dip event, and a horizontal event.

Figure 2.2 (Bottom) is the migrated section of Figure 2.2 (Top). The bowtie is untied

'The resulting reflectivity section is often convolved with a wavelet, since imprecise knowledge
of the original recorded wavelet prevents perfect deconvolution.
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Figure 2.1: Migration of a dip event: After migration, the reflection segment £,%, in
time domain is mapped to the correct spatial location 2; 2.

into a syncline; the dip event is moved updip, steeped, shortened, and moved to the
true position; the horizontal event is unmoved. Figure 2.3 answers why a syncline
looks like a bowtie on the stacked time section. Given the subsurface picture in
Figure 2.3a, the normal-incidence rays can be computed to derive the zero-offset
section in Figure 2.3b. Only five CMP locations are shown for clarity. At location
2 and 4, there are two distinct arrivals, while at location 3, there are three distinct
arrivals. By filling in the intermediate raypaths and completing the procedure that
trace the traveltime curve in Figure 2.3b, the bowtie character of the syncline can
be constructed on the time section. Migration reveals the true structure underneath

and therefore delineates the syncline. (Figure 2.2).

There are a number of concepts and assumptions made in migration theory
which are fundamental to a clear understanding of present day practice; only two

are introduced here. It was mentioned earlier that migration was a mapping process
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Figure 2.2: Top: Synthetic zero offset section. Bottom: Migration collapses diffrac-
tion and maps dipping events in a stacked section to their true subsurface locations.
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Figure 2.3: (a) A depth model consisting of a synclinal reflector. (b) The cor-
responding time section. Trace the bowtie in the time section. (Adapted from

Yilmaz, 1987)

from surface recorded acoustic data to an earth reflectivity section. This process is
known as ‘depth migration’. However, the reason for the title is not the nature of
the final section, but the fact that the migration process has tracked the wavefield in
depth taking full account of the curvature of reflections. Another common presenta-
tion of migrated data is in terms of a time section. The time section is obtained by
converting the earth reflectivity section using a suitable velocity field, or, in the case
of a ‘time migration’, the time coordinates are the most natural output coordinates.
In ‘time migration’ diffraction effects are considered, but not those refraction effects

that are due to lateral changes in velocity (Hubral, 1977; Judson et al., 1978).



2.2 Theoretical and practical aspects of Kirchhoft

migration

The Kirchhoff migration technique was developed from the Kirchhoff integral so-
lution to the wave equation. This technique can handle most of the situations in
migration (lateral variations in velocity, irregular sampling) and it is unique in its

ability to migrate input traces selectively onto a pre-specified output volume.

2.2.1 From diffraction summation to Kirchhoff migration

Kirchhoff migration is closely related to diffraction summation. As mentioned be-
fore, diffraction summation is a straightforward summation of amplitudes along the
hyperbolic trajectory whose curvature is governed by the velocity function. The
equation for this trajectory can be derived from the geometry of Figure 2.4a. As-

suming constant velocity v, from the triangle CX 4A in Figure 2.4a, we can derive:

t2(z) = t3 + 42 Jv*. (2.2.2.1)

Having computed the input time ¢(z), the amplitude at input location B is placed
on the output section at location A, corresponding to the output time 7 = ¢, at the

apex of the hyperbola (Fig. 2.4b).

The diffraction summation method of migration that incorporates a weight-
ing function w, is called Kirchhoff migration. The weighting function consists of

three factors (Yilmaz, 1987):
e The obliquity factor, which describes the angle dependence of amplitudes and

10
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Figure 2.4: Migration considerations for a single migrated reflection event. (a) A
single migrated event, (b) migration sums along a hyperbola.

is given by the cosine of the angle between the direction of propagation and

the vertical axis z.

e The spherical spreading factor, which is proportional to (1/vr)%? for 2-D wave
propagation, and (1/vr) for 3-D wave propagation.

e The phase factor (or the wavelet shaping factor), which is designed with a
45—degree constant phase spectrum and an amplitude spectrum proportional
to the square root of frequency for 2-D migration. For 3-D migration, the
phase shift is 90 degrees and the amplitude is proportional to frequency.

So Kirchhoff migration can be simply written as:

I(z,2) = / w(r, s,z,2) X D(r,s,T) dsdr. (2.2.2.2)

¥
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Where I(z, z) is the migrated image, w is weighting factor, D is the input data at
time T and T =T, , +1T, ., is the traveltime along the raypath joining the source-
receiver point (r,s) with the image point (z,2). If a zero-offset section (receiver
and source are at the same location (z', 0)) is considered and the media velocity v is

constant, T in equation (2.2.2.2) can be replaced by r/v, where r = /(z — )% + 22

is the distance from the receiver (source) to the image point (z, 2).

What was determined from a physical point of view in the foregoing discus-
sion on Kirchhoff migration can be rigorously described by the integral solution to
the scalar wave equation. Schneider (1978), Berryhill (1979) and Berkhout (1980)
are excellent references for the mathematical treatment of the Kirchhoff migration

method.

2.2.2 Integral formulation for Kirchhoff migration

Schneider (1978) discussed the mathematical formulation of migration as a solution
to the scalar wave equation in which surface seismic observations are the known
boundary values. In his approach, the migrated image is expressed as a surface
integral over the known seismic observations when 3-D coverage exists. In the case
of 2-D coverage, the wave equation migration is still possible by assuming that the
subsurface and hence the surface recorded data do not vary perpendicular to the
seismic profile. With this assumption, the surface integral reduces to a line integral
over the seismic section. Neither the 2-D or 3-D integral migration algorithms

require any approximation to the scalar wave equation (Schneider, 1978).

The scalar wave equation is
1
v2U' _ @_Uu = —47rq(r, t), (2.2.2.3)

12



Where U is the pressure, C is the velocity and ¢ is the source. The solution to
the inhomogeneous wave equation in an arbitrary volume Vj is given by a surface
integral on Sy enclosing Vy. A volume integral over V, involves both source terms
and initial values. The latter can be ignored since the initial values are assumed
to be zero before the shot instant, and there are no real sources in the subsurface
image space, just reflectors and scatterers. In this case, only the homogeneous wave
equation and inhomogeneous boundary conditions of Dirichlet type are left and the

remaining surface integral is
Ur,t) = L[ ¢9(¥3U( to) — U( %}iG] (2.2.2.4)
’ —E/ o/ o[é—ﬁ To, b0 7o, an 1

- Here, the surface Sy includes the recording surface Z = 0 plane and a hemisphere
extending to infinity in the subsurface, n is the outward normal vector to the surface,
and G is a Green function. The specific geometry of interest is shown in Figure
2.2.2.5. Contributions from the distant hemisphere are ignored, and the boundary
value representation reduces to an integral over the surface involving the wavefield on
So and a suitable Green function G. Since U(ry,%o) in equation 2.2.2.4 is equated
to the observed seismic data, we will set G = 0 on Sp in order to eliminate the
gradient of U. A Green function having these properties at the free surface consists

of a point source at ry and its negative image at rg,

S(t-to—8) o(t-to- %)
- ¢/ _ = c/ (2.2.2.5)

G(T,t | To,to) e

where

R=\/(z— %)’ +(z — %)* + (¥ — %)%,

13
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Figure 2.5: Geometry for boundary value solution.

and

R = /(z +2)? + (z - 50)* + (v — 00)?

By substituting equation (2.2.2.5) into equation (2.2.2.4), equation (2.2.2.4) yields
the following integral representation for the wavefield U(r,t) at any point in the

image space in terms of observations of the wavefield U(rg, ty) on the surface:

U(r,t) = / dto / dSo - Ulro,to) 5 [ _ ——) ] (2.2.2.6)

By performing the indicated Z, differentiation and ¢, integration, equation (2.2.2.6)

can be re-expressed as

o, C
Ur,t) = o / dSo g [U'(ro,to) + FU (o, 0], (s (2.2:2.7)

14



This is the 3-D Kirchhoff integral formula. This equation states Huygen’s principle?
and relates the wavefield U(r, to) observed on the plane Z = 0 to its value at a point
U(r,t) in the earth’s subsurface (see Figure 2.5) at an earlier time. In the seismic
application, the second term in the brackets is normally ignored since it is small, but,
as Schneider (1978) points out, its inclusion is trivially achieved®. The operations
implied by equation (2.2.2.7) are simply weighting, scaling and phase shifting of data
on a hyperbola. The term cosf represents a directivity term (obliquity factor) which
falls off from its value of unity at the apex of the hyperbola to a lesser value on the
flanks. The factor 1/RC represents a true amplitude scaling factor to the derivative
of the pressure field (data). The differentiation of the pressure with respect to time,
when examined in the frequency domain, is equivalent to applying a 7/2 phase
shifting operation together with a linear high—frequency boost (a ‘Newman’ filter)

to the pressure.

Equation (2.2.2.6) has another representation by interchanging the Z; deriva-
tive with a Z derivative which may then be taken outside the integral.

U(r,t) = —— — / dSy—2-— ¢! U(r"’ c), (2.2.2.8)

It can be recognized from this equation that migration can be viewed as downward
continuation operation that transforms surface recorded data to deeper hypotheti-
cal recording (Schneider, 1978). The transformation is related to the point source

solution to the wave equation via convolution, and it can be symbolically expressed

2Huygen’s principle says: each point on a wavefront can be considered as the source of a small
secondary wavelet that travels outward in every forward direction with the velocity of the medium
at that point.

3In equation (2.2.2.7), because of the C/R or 1/t multiplier, the second term in brackets is
frequently dropped giving the Rayleigh-Sommerfeld diffraction formula of optics (Goodman, 1968).
To retain both terms, the seismic section needs to be differentiated and added with the same section
scaled by 1/¢.

15




1 o 8t 5)
U($, Y, 2, t) - U(.’E, Y, 20, t) * 57?5—,3—0- [‘—;—_—]; (2.2.29)

where

r? = Az? + 12 + o2
The transformation becomes complex multiplication in frequency wavenumber do-
main. By taking the Fourier transform with respect to z,y and ¢, we obtain

U(kz, ky, 2,w) = Ulks, ky, 20, w) H (kz, ky, Az, w), (2.2.2.10)

where

H = exp*i&4 \/ (g)2 — k2 — k2. (2.2.2.11)

The transfer function H is seen to be a pure phase operator embodying the exact
dispersion relation for the scalar wave equation. The operator H enables us to
extrapolate waves in depth. The choice of sign in equation (2.2.2.11) determines the
direction of extrapolation. However, in the operation of migration, the positive sign

must be used to extrapolate converging waves back toward their origins.

Schneider also introduced the Kirchhoff integral equation in 2-D. In the 2-D

case, the wavefield is independent of y,
U(z,y,0,t) = U(z,0,%).

This is true when two conditions are met: (1) subsurface geology must be indepen-

dent of y, and (2) the source must either be a line source in the y—direction or the

16



source and receiver must be collocated as is approximately the case in CDP stack.

Then from equation (2.2.2.7) the 2-D Kirchhoff integral formula can be obtained:

© cosf {61/2[](370,0, to) dz (2.2.2.12)

Uz, z,t) %/ ]
—oo (R26)1/2 ot1/2 to=t+(Ra/c)

where

Ry = [(zo — 2:)2 + 22]1/2.

In equation (2.2.2.12) the last term in the square brackets of equation (2.2.2.7)
is dropped. The square root differentiation in equation (2.2.2.12) is not defined,
except in the frequency domain, where it represents a nonlinear high—frequency
boost followed by a m/4 phase shifting operation. The other factors appearing in

equation (2.2.2.12) are the 2-D counterparts to those in equation (2.2.2.7).

In the practical implementation of equation (2.2.2.7) and equation (2.2.2.12),
the integration is replaced by summation and the infinite limits in the integrals by
finite limits. The replacement of integration by summation results in discretisation
errors (due to the discrete nature of placing geophones on the ground), while the

termination of the summation after a finite number of terms manifests itself as a

‘truncation’ error.

2.2.3 Practical aspects of Kirchhoff migration

Besides the errors from the discretisation of the Kirchhoff integral formula, several
things can affect the quality of a migrated image. Some, such as spatial aliasing®
and velocity uncertainty affect all migration methods. Other quality differences

4Spatial aliasing means insufficient sampling of data along the space axis. The data should be
sampled at more than two points per wavelength (Claerbout and Black, 1993).
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stem from the migration method. In Kirchhoff migration, the aperture width used
in the summation and the maximum dip to migrate are also important parameters

that affect the performance of Kirchhoff migration.

A migration algorithm can be tested by computing its impulse response.
A band-limited impulse response is generated by using an input that contains an
isolated wavelet on one trace only. The ideal migration process should produce
a semicircle. Figure 2.6 (Top) shows an impulse response which indicates that
Kirchhoff migration can accurately handle dips up to 90 degrees. The dip on a
migration impulse response is measured as the angle 6 between the vertical and a
specified radial direction. The migration can be confined to a range of dips present
on a seismic section. The impulse response for the dip-limited migration operator

is a truncated semicircle. This is shown in Figure 2.6 (Bottom).

The migration aperture is measured in terms of the number of traces that the
hyperbolic path spans. In theory, a diffraction hyperbola extends to infinite time
and distance. In practice, a truncated hyperbolic summation path is used and the
migration aperture is specified. The aperture width is an important parameter in the
practical implementation of Kirchhoff migration. Using too small aperture width
causes a dip filtering action during migration because a small aperture excludes
the steeper flanks of the diffraction hyperbola from the summation. For any given
time, the optimal value for the aperture width is defined by twice the maximum
horizontal displacement for the steepest dip of interest in the input section (Yilmaz,
1987). The horizontal displacement in migration associated with a dipping event

can be computed by the formula:

d, = (v’ttanb;)/4. (2.2.2.13)
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Figure 2.6: Top: A semicircle impulse response. Bottom: Dip-limited migration
operator (a truncated semicircle).
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Where d, is the horizontal displacement, v is the medium velocity, ¢ is traveltime,
and 6, the apparent dip of the reflector on the unmigrated time section. Another
affect by using small aperture is that spurious horizontally dominant events may be
produced. This is because the summation using very small aperture includes only
the apex portion of the diffraction hyperbola, where the dip—filtering action passes

flat or nearly flat events.

2.2.4 Input and output based migration techniques

In Figure 2.4, we assumed that the average velocity along the ray paths is given
by v. From Figure 2.4, the following result can be drawn: the arrival times of all
possible unmigrated events are given by the response at surface (2o = 0) due to a

reflection at a point source (z 4, 24). In mathematical terms,

(0—24) , (z—z4)®
(v/2)? w2? o (2.2.2.14)

The left two terms are known values, the right item is a unknown variable. So
this equation describes a hyperbola in the z — ¢ plane, the apex of which is given
by (z4,224/v). Hence, if a single migrated event has to be constructed, then all
sub—contributions have to be collected along a hyperbola. The latter addresses the
following problem: given a migrated reflection event, where does the energy come
from during the migration process. The problem can also be approached from the
other end: where does the energy of a given unmigrated reflection event move during

the migration process.

If we assume zero—offset data and consider one single reflection event with

arrival time ¢; at trace position z; (Figure 2.7a), moreover, if the average velocity
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(a) (b)
Figure 2.7: Output based Kirchhoff Migration. (a) A single reflection event. (b)

Migration smears the event along a half circle.

along the travel path v is given and only straight travel paths are considered, then
all possible reflection ‘points’ must be situated at a distance r;; = vt;/2 from the

source-receiver position (z;, zg = 0) (Figure 2.7b). Mathematically speaking:
(z—20) + (z —z)* =13, (2.2.2.15)

or

(z(,,_};;z) +(’;v‘/'5"2) —2 (2.2.2.16)

The left two terms are variables, and the right term is a known value. So equation
(2.2.2.15) describes a half circle in the z — z plane, and equation (2.2.2.16) describes
a vertically rescaled half circle in the z —¢ plane, where t = (2 —2)/(v/2) represents

the two way vertical travel time. Hence, if a single unmigrated reflection event is
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given, the only sensible migration action that can be taken is to ‘smear’ the event

along a migration half circle.

The above two examples illustrate the signature of Huygen’s secondary source
(Claerbout, 1985), which is a semicircle in the z — z plane and a hyperbola in
z — t plane. Huygen’s secondary source signature leads to two different practical

migration techniques: input based and output based techniques.

Input based migration

According to Huygen’s secondary source, the zero offset section can be considered
that consists of a superposition of many hyperbolic traveltime responses. The migra-
tion based on this consideration consists of searching the input data in z —¢ space for
energy that would have resulted if a diffracting source (Huygen’s secondary source)
was located at a particular point in the output z — z space. This search is carried
out by summing the amplitudes in = — ¢ space along the hyperbolic curve that cor-
responds to Huygen’s secondary source at each point in the z — 2 space. The result
of this summation is mapped onto the corresponding points in the z — z space. The
migration algorithm can be summarized as follows: First multiply the input data by
the obliquity and spherical spreading factors. Then apply the filter v/4w in Fourier
domain and sum along the hyperbolic path defined in equation (2.2.2.1). Finally,
place the result on the migrated section at time 7 = £; corresponding to the apex
of the hyperbola. This method uses the ‘floating time reference’ concept (Berkhout,
1984). This concept is very handy in time migration (wavefields are extrapolated
with fixed extrapolation time steps AT, instead of fixed depth steps Az). The imag-

ing plane can be chosen at an integer amount of a suitable time sampling interval,
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le.
T = mAT.
This could be accomplished by interpolation but a more efficient approach would be

to make Az a variable such that
Az = v, AT,

where AT is a fixed value. This technique is referred as an input based technique.
Figure 2.8a shows a migration scheme for zero offset data using the input based

technique.

Output based migration

In an output based technique, a reflector in the subsurface is visualized as being
made up of many points that act as Huygen’s secondary sources. Migration is
viewed as the superposition of point source responses. To perform output based
Kirchhoff migration, the filter v/iw can be first applied to all input traces. Then
while holding the output space (the image) in the computer memory, the traces
in time section are read one by one, and the points on a trace are smeared onto
corresponding depth positions along with a weighting factor w. The factor w is
usually computed in the inner loop of the migration algorithm. However, it may be
computed in the outer loop of the migration algorithm (Gray, 1998). A migration

scheme for zero offset data using an output based technique is shown in Figure 2.8b.
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Figure 2.8: Two migration schemes. (a) Input based scheme. (b) Output based

scheme.
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2.2.5 Kirchhoff migration on compressed data

It was mentioned that efficiency is a critical issue in migration. Compressing the
seismic data volume to a smaller one (which contains most of the energy of the data)
and performing the migration on this smaller volume of data (the compressed space),
may result in a fast migration algorithm. However, the situations are different for

input and output based migration methods.

Input based migration can be highly optimized by using compressed data as
input. For example, using the scheme discussed in Figure 2.8a, hyperbolic sum-
mation is performed for each point on an input section. Due to the fact that the
compressed data is a sparse representation of the original data, the required positions
where the summations need to be computed is reduced which results in reducing
the computational cost of the procedure. The input based technique is best suited

for time migration, where a laterally unvarying velocity field is assumed.

In complex media (with lateral variations in velocity), depth migration is
required. In depth migration, an output sample location I(z,z) is computed by
integrating along a traveltime curve (see equation (2.2.2.2)). It is clear that for
each source-receiver pair there is an associated traveltime table T'(r, s, z, 2). These
traveltime tables coincide in size with the migration output grid, and impose the
requirement of using an output based migration technique. In this technique, each
input trace (uncompressed or compressed) must visit each output image point (see
Figure 2.8b). Therefore, when using compressed traces as input, it is difficult to

improve the computational efficiency of the algorithm.

In Chapters 3 and 4, I will address two methods to overcome the difficulties

encountered when we migrate compressed data.
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CHAPTER 3

Migration of wavelet transform filtered data

3.1 Introduction

In seismic data processing, we usually transform acquired data to various domains
in order to discriminate against coherent and incoherent noise. As an example, we
can mention the 1D Fourier transform that is used to reject high frequency noise
- and the 2D Fourier transform that can be used to reject coherent noise like ground
roll (Yilmaz, 1987). The Radon transform (Fyfe and Kelamis, 1992) is another
transform that serves to reject coherent noise in this case multiple interference that
tends to mask primary reflections. In this chapter, we study the application of
another transform, the wavelet transform (WT), which is used not only to reject
noise if needed but also to compress the seismic data. In particular, we use the WT
as a means to identify where the seismic energy needs to be migrated is localized in

the data domain.

In the first part of this chapter, the theory of the wavelet transform is re-
viewed. In the final part of this chapter, an implementation of the WT to the

problem of post—stack time migration is discussed.
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3.1.1 A brief history of the wavelet transform

The wavelet theory involves representing general functions in terms of simple and
fixed building blocks at different scales and positions. Wavelet have a brief his-
tory. In the 70’s, atomic decompositions and some formulas which are similar to the
continuous wavelet transform, were in use. In 1980, Grossman and Morlet studied
the wavelet transform in continuous form and suggested the word ‘wavelet’ for the
building blocks. It became clear that these techniques could be effective substitutes
for Fourier series in numerical applications. In 1985, Stephane Mallat discovered
some relationships between quadrature mirror filters, pyramid algorithms, and or-
thonormal wavelet bases. Based on these results, in 1986, Meyer et al. constructed
a new orthogonal wavelet expansion (Meyer, 1989). A couple of years later, Ingrid
Daubechies (Daubechies, 1988) used Mallat’s work to construct a set of wavelet or-
thonormal basis functions that are perhaps the most elegant, and have become the

cornerstone of wavelet applications today.

3.1.2 Applications of the wavelet transform in geophysics

In the last decade, the wavelet transform and related localized transforms have been
applied in various branches of science. Much of the research has occurred in the fields

of mathematics and signal processing, e.g. image and video compression (Hilton et

al., 1995). In geophysics, we can summarize the application of the WT as follows:

e Compression: WT is applied for compression of seismic reflection data (Bosman

and Reiter, 1993; Donoho et al. 1995).

e Time-frequency signal processing: WT is used to preprocess seismic reflection

data. In particular to improve SNR (Miao and Moon, 1994).
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e Operator representation and image analysis: WT is used for efficient migration

schemes (Dressing, 1997).

e Attribute analysis: Characterization of patterns in signals using WT (Li and

Ulrych, 1996).

e Inversion: Wavelet transform inversion has been used to incorporate scale and
location information in the formulation of an inversion problem (Li et al., 1994;

Li et al., 1996).

3.2 The theory of wavelet transform

For extracting specific information from a given function (signal) f(t), the function
is transformed into a suitable representation where the desired information can be
easily read. The adopted transformation depends on the nature of the information
in which we are interested. Moreover, the transform should be invertable. In this
section, the basic theories of wavelet transform and multiresolution analysis are
reviewed. The wavelet transform is interpreted from the continuous and the discrete
point of view, with a special emphasis on orthonormal wavelet bases and their

properties.

3.2.1 The time—frequency representation

The Fourier transform (FT) is widely used in signal processing. A signal can be

transformed into the frequency domain via

flw) = \/—12—; [ f(t)e™“*dz. (3.3.2.1)
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The frequency content of the signal is well represented after the Fourier transform.
However, the Fourier transform does not provide the time information in f (w) di-
rectly. The windowed Fourier transform (WFT) is a well-known method that can
provide time-frequency representation of a signal (Gabor, 1946). To perform WFT,
first we multiply the function f(t) by a fixed function g(t) (a window function which
can restrict the signal f in an interval), then we compute the Fourier coefficients of
the product. This procedure is repeated and each time a shifted version of g is used
for the multiplication. The result of WFT leads to a family of windowed Fourier

coefficients. The WFT can be written as the inner product:

Smn(f) =< [, gmn >, (3.3.2.2)

where
gm,ﬂ(t) = e-imo’g(t - ntﬂ)

Each g, is a envelope function, shifted by nt, and then ‘filled in’ with oscillations.

The indices n and m indicate the time and frequency localization of gm .

The wavelet transform is similar to the WFT. It computes the inner products
of f with a sequence of functions wy,,, with m indicating frequency localization,
and n time localization. The main difference between WT and WFT (Daubechies,
1992) is that the window functions gy, , have a fixed width and wy,, is generated

by dilations and translation of a basic wavelet w :
Wi n(t) = ag ™ w(ag™t — nbo) (3.3.2.3)

where the w is typically well concentrated in time and in frequency and has integral

Z€ero
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Figure 3.1: Left: Db10 wavelet. Right: Ricker wavelet

/ w(t)dt = 0, (3.3.2.4)

which means it has at least some oscillations.

3.2.2 Definition of WT
The continuous wavelet transform

In pure mathematics, a wavelet has the following definition (Louis et al., 1997):
A function w € L*(R) which satisfies the admissibility condition
(w)
0<cy:= 21r/ ——=dw < 00. (3.3.2.5)
R |w]

Figure 3.1 gives two examples of wavelet: Figure 3.1 (Left) is compactly—supported
orthonormal wavelet ‘Db10’ wavelet and Figure 3.1 (Right) is ‘Mexican hat’, which
in geophysics is called ‘Ricker wavelet’.
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The wavelet transform L,, of a function (signal) f € L?(R) with respect to
the wavelet w is defined as
Luf(a,b) = ——]|a|"V/2 / f(t)w(t—“—b-)dt (3.3.2.6)
w b] \/a——u R a ) el
where, a,b € R,a > 0 . Here the dilation and translation parameters a,b vary
continuously over R. Another ingredient in this equation is a symmetry of concen-
tration in |w(w)|?, with respect to the measure |w| 'dw, on positive and negative

frequency axes. This requirement is automatically satisfied if w is real.

The inverse wavelet transform is given by:

(3.3.2.7)

1 1 z — by dadb
f(x)—_-ﬁ/R/Rwa(a,b)\/mw( a ) a?

Discrete wavelet transform: frames

The wavelet family (equation 3.3.2.3) and the wavelet transform (equation 3.3.2.6)
can be viewed as discretized versions of the continuous wavelet transform, with a,b
restricted to a = af* and b = nbeag’. In the discrete case, there does not exist,
in general, a ‘resolution of the identity’ formula analogous to ( 3.3.2.7) for the
continuous case (Daubechies, 1992). Reconstruction of f from the L, ,(f) raises

the following questions:

1. Can we characterize f completely by knowing L, »(f)?

2. Can we reconstruct f in a numerically stable way from L, (f)?
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To answer these questions we have to introduce the concept of Frames. Daubechies

(1992) gave the definition of a Frame as:

A family of functions {gmn, m € J} in a Hilbert space is called a frame if there ezist
A > 0,B < oo so that, for all f in the Hilbert space,

AIFIP < 31 < frgmn > P < BIFI® (3.3.2.8)

meJ

A and B are called the frame bounds. Four types of frames are given (Daubechies,

1992):

1. {gmn} is called a tight frame for A = B # 1.

2. {gmn} forms an orthonormal basis if A = B =1 and |gn,| = 1.

consequently,

F=2<figmn> g, (3.3.2.9)

3. {gmn} is called a snug frame for A # B and B/A close to 1.

4. For B/A > 1, the decomposition and reconstruction become less stable.

Daubechies (1990) showed that since the wavelets wuy,, constitute a wavelet frame
for a wide range of values gy and by, the reconstruction of f from its wavelet repre-

sentation {f,w,,} may be carried out.

3.2.3 Wavelets and filter banks

The wavelet transform L,, f can be interpreted as a convolution of f with the dilated

wavelet w(-/a) for every fixed value of a. Because of the admissibility condition in
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Figure 3.2: A two—channel filter bank.

equation ( 3.3.2.5), we can show that @(0) = 0 and w € L'(R) N L?(R). 1t follows
that lim,, ,o W(w) = 0 and w is actually a band pass filter (Louis et al., 1997).
Therefore, the properties of the wavelet transform can be analyzed via filter banks.
Figure 3.2 shows a two—channel filter bank. It is a set of filters, linked by sampling
operators and sometimes by delays (Strang, 1997). The down-sampling operators
are decimators and the up-sampling operators are expanders. In this two—channel
filter bank, the analysis filters Hy and H; are respectively lowpass and highpass
filters. We can use the Haar filter banks! as an example to illustrate some properties

of the filter banks.

In what follows, I will develop the basis to understand the idea behind filter
banks. Let us start with a simple model composed of two signals z(n) and y(n).
Let z(n) be an input signal and y(n) the output signal,

y(n) = %z(n) + %z(n -1). (3.3.2.11)

1The Haar filter banks are based on the Haar wavelet which is given by

1 0<z<1/2
wiz)=¢{ -1 1/2<z<L (3.3.2.10)
0 otherwise

In equation (3.3.2.3), if we choose ap =2 and by = 1, the set {wpm,} is the Haar wavelet and forms
an orthonormal basis for L2(R).
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This model defines a lowpass filter. Its output at time ¢ = n is the average of the

input z(n) at that time and the input z(n — 1) at the previous time. In matrix

structure, y = Hz:

y(-1) i 2 z(-1)
y(0) | = 1 z(0) |- (3.3.2.12)
y(1) ; 3 z(1)

In this filter, the filter coefficients are A(0) = 3 , (1) = ;. In general, for a lowpass
filter, the total output is

y(n) = h(0)z(n) + h(1)z(n — 1)+ h(2)z(n —2) + ...
= Y h(k)z(n - k). (3.3.2.13)
3

In frequency domain, the filter has the following Fourier transformation:
_ Wy —iw/2
H(w) = (cos 2)e , (3.3.2.14)
The magnitude and the phase are given by:
|[Hw)| =cos¥ and ¢(w)=—%. (3.3.2.15)
Figure 3.3 (Left) is the plot of the magnitude |H(w)| against the freqency w. The
cosine of ¥ drops to zero at w = , the high frequency is wiped out. Figure 3.3

(Right) shows graph of ¢(w) = —%. It is a straight line, which means ‘linear phase’.
It reflects the fact that the filter coefficients § and ; are symmetric.

34



[H(w)=lcos?) $(@)=2

L
" ®
-T 0 T - 0 s

Figure 3.3: Left: The magnitude |H(w)| = cos %. Right: The phase of H(w).

A lowpass filter takes the ‘average’. A highpass filter takes the ‘difference’.
The latter enhances the high frequency components in the signal:

y(n) = %x(n) - %:c(n —-1). (3.3.2.16)

The filter coefficients are h(0) = 1 and k(1) = —. Equation (3.3.2.16) is a convo-

lution y = h % z, which in matrix form can be written as follows:

y(-1) -5 3 y(-1)
y(0) | = -1 1 y(0) (3.3.2.17)
3 3 y(1)

y(1) -

b e e o

At frequency w, the input vector can be expressed as z(n) = ™. The highpass
output is

— 1 inw 1 i(n—Ljw
y(n) = 3¢ 3¢

1 1, W
= G
= Hj(w)e™. (3.3.2.18)
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Figure 3.4: Left: The magnitude |H;|. Right: The phase of highpass filter.

The quantity ; — 2e is the highpass response and
H,(w) = (sin g) ie~ /2, (3.3.2.19)

The magnitude, |H;(w)| = |sin %|, has a zero response at w = 0. The phase factor of
the filter has a discontinuity at w = 0, and is linear at any other point (Figure 3.4).

In any reasonable sense, the lowpass and highpass filters separately are not
invertable. Hy removes the highest frequency w = m and H, removes the lowest
frequency w = 0. However, together, they separate the signal into frequency bands
and constitute the beginning of a filter bank. If the action of filtering produces a
new signal with a length equal to the length of the original signal, the action of
applying a high pass and low pass filter will double the amount of samples of the
original signal. The filters are applied independently to z(t), not in cascade. In

[#]1-[%]

the size of the left, middle and right matrixes are 2n x n, n x 1, and 2n X n,

matrix form

respectively. Now we have a system with more equations that unknowns. We will
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see that decimating the output serves to render a system of n x n equations.

The operation of downsampling is called decimation. It is represented by

symbol ({ 2). Decimation removes a vector every other component. e.g.

: o .
z(-1) z(-2)
ayl O (2] 2@ | (3.3.2.21)
z(1) z(2)
z(2) z(4)
I ]

This operation is not invertable. The recovery of z from ({ 2)z is possible if X (w)
is zero over a half-band of frequencies. Such a signal is ‘band-limited’. It may be
limited to the upper half-band or the lower half-band: X(w) = 0 for 0 < |w| <
3 or X(w) =0 for § < |w| < . For band-limited signals the odd-numbered com-
ponents can be recovered from the even—numbered components (Shannon Sampling
Theorem). Below we show a ‘downsampling matrix ’ which is the identity matrix

with the odd—-numbered rows removed:

L 2(-2) | [ - ]
00 1 z(-1) z(—2)
z(0) |=1| z(0) |- (3.3.2.22)
0 01
z(1) z(2)
- - 2(2) i |
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Since the rows of this downsampling matrix are orthonormal, the matrix multipli-

cation (J 2)({ 2)T must be the identity matrix. The operator ({ 2)7 is important.

The transpose of downsampling is upsampling:

2" =(t2) (3.3.2.23)

Upsampling places zeros into the odd—numbered components, e.g.

- . y(-1)
(-1) °
y(—
(t2)| y0) | =) yg)) : (3.3.2.24)
y(1) o)
) 0
The matrix form of upsampling is:
i 1| ¥(=1)
10 .
0 (-1) °
y(—
10 y(0) | = yg)) . (3.3.2.25)
0 y(1) o)
10
i ) 0




Multiply the matrixes of ({ 2) and (1 2), the result is an identity matrix which mear
that after upsampling and then downsampling the original signal is recovered. I
a filter bank, downsampling is first used, and then upsampling is applied. In thi
particular order, ({ 2) removes the odd-numbered components and (1 2) puts i

zeros. So (1 2)({ 2) replaces the lost components by zeros:

1

(t2)(2) = g (3.3.2.26)

The essential part of the filter bank is that the downsampling acts on the outputs of
two separate lowpass and highpass filters. Therefore, although only even-numbered
components of the two outputs are kept after downsampling, the information of
the original function is still preserved. For compensating the loss of half of the
components in (} 2), a /2 should be applied. Therefore the lowpass and highpass

filters can be rewritten as C(w) and D(w):
lowpass: C(w) = v2Hp(w)
highpass: D(w) = V2H;(w).
In discrete time domain, those filters are c¢(n) and d(n). The two steps, downsam-
pling and lowpass filtering remove the odd-number rows of the filter matrix C. The

combination of filtering by C and decimation by (| 2) is represented by a rectangular

matrix L:
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L=(2C= % & : (3.3.2.27)

The entries are ¢(0) and ¢(1) but half the rows of C' have disappeared. Similarly
the decimated highpass filter is represented by a rectangular matrix B = ({ 2)D.

Removing half the rows of D leaves the matrix B with a double-shift:

L1
IR AR

B=(l2)D= L 1 (3.3.2.28)

(3.3.2.29)

I
N
L
—

This matrix represents the analysis bank in a filter bank. All rows and columns
- are unit vectors and they are mutually orthogonal. This combined square matrix is

invertible and the inverse is the transpose:



Figure 3.5: A tree of filter bank.

1 -1
1 1
-1
L [ 1 1 -1
—[r gr ] = : (3.3.2.30)
[3] V2 1 1 -
Because of the orthogonality,
L
[ LT BT ] l — LTL+BTB =1. (3.3.2.31)
B

Equation (3.3.2.31) clearly suggests that a signal can be reconstructed by an inverse
bank. This is also a two step procedure— upsampling and filtering. The inverse

bank is also called synthesis bank.

In Figure 3.5, we illustrate a tree of filter banks. In this case, the lowpass
part is further decomposed into 2 new signals. The relationship between filter banks

and wavelets can be easily understood via the idea of multiresolution.
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3.2.4 Multiresolution
Multiresolution analysis

A function f(¢) can be decomposed (projected) in a sequence of subspaces V;. That
means that there is a piece of f(t) in each subspace. Those pieces (or projections)
give finer and finer details of f(t). A multiresolution decomposition of f(t) can be

described with the following requirements:

1. There is an increasing sequence of subspaces V; (complete in L?).

2. There is a wavelet subspace W; which is the difference between V; and V4.

Therefore
Vi+W; =V
3. If f(t) € V; then f(2t) € V;1..

4. If the basis ¢(t) € Vp then ¢(¢t — k) € Vg and if w(t) € Wy then w(t — k) € Wh.

5. The basis ¢(2/¢t — k) € V; and w(27t — k) € W;.

In the theory addressed above, the first property tells us that each V; is contained
in the next Vj,:

%CV;C...C‘/_-,‘CV}.;_lC...

A function in the whole space has a piece in each subspace. Those pieces contain
more and more of the full information of f(t), e.g. the function f(t) has a piece
fi(t) in the subspace V; and a piece f;41(t) in the subspace V;,;. Therefore, we can

also write the first property as:

fo®) C fit) C ... C fi(t) C faalt) C ...
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In the second property, by identifying the second family of subspaces W; as
‘/j @ W] = ‘/j-‘}-l)

(symbol @ means ‘direct sum’ as V; and W; intersect only at zero vector) we can

derive that the subspaces W; contain the new information Af;(t) and
fi@) + Af5(E) = fin().
Further decomposition of the subspace V; or the function f; leads to:
H@WBWD... W, = Vi,

or

fo(t) + Afo(t) + Afi(t) + ...+ Af(t) = fin(t).

The third property states a dilation requirement:
feV; < f(2z) € Vj4.

This means that if we assume f(t) = c_je ("9 + ... + ¢je™"* (c; are the Fourier

coefficients),
fj(t) = cheikt for Ik' S 2j,

fit1(t) =3 cxe™® for |k| < 271,
and A f; contains all frequencies between 27 and 27+
Afi(t) =3 cxe™ for 27 < |k| < 27

The fourth and fifth properties discuss the translation requirement. The translation
leads to the fundamental requirement of time-invariance (shift invariance) in signal
processing. The subspaces are shift-invariant: If f;(¢) is in V; then so are all its

translates f;(t—k). If we suppose f(t) is in Vj, then f(2t) is in V; and so is f(2t— k).
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By induction, f(2°t) is in V; and so is f(2/t — k). The requirement concerning a
basis for each space V; is that there exists ¢(t) so that ¢(¢ — k) is an orthonormal
basis for V5. When the functions ¢(t — k) are an orthonormal basis for Vj, the
rescaled functions v/2¢(2t — k) will be an orthonormal basis for V;. At scaling
level j, the basis functions ¢(27t — k) are normalized by 2//2. The requirements
discussed above are referred to as ‘multiresolution analysis’ (Mallat, 1989). From
the multiresolution analysis, we can derive that a function f;(¢) in V; which has the

basis ¢;x(t) = 29/2¢(27t — k) can be expressed as

(oo}

fi®) = Y apdu(t) (3.3.2.32)

k=00

= Y aodor(t) + O bokwor(t) + O buwik(t) + ... + 3 bi—nrwi-u(t).
% 3 % k

Where ¢ is scale function, aj; are the scale coefficients, w is wavelet function, and
bjr are the wavelet coefficients?. Equation (3.3.2.32) describes the nature of the
wavelet transform. Figure 3.6 shows the parallelism between a filter bank tree in
discrete time (Figure 3.6a) and multiresolution in continuous time (Figure 3.6b) is

almost perfect.

Relationship between wavelets and filter banks

If we suppose ¢(t) is in Vj, then ¢(t) is also in V; as the subspace V; is contained
in V;. Therefore, ¢(t) must be a combination of the basis function 2'/2¢(2t — k) for
the subspace V;. The coefficients in the combination will be called c(k). If we bring

the factor 2!/2 outside:

2Scale coefficients a; and wavelet coefficients bjy, are the coefficients after the wavelet transform.
They are also called approximation and detail coefficients, respectively.
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Figure 3.6: The parallelism between (a) a filter bank tree and (b) multiresolution.

8(t) = V33" clk)$(2t — k).
k

This is the dilation equation. To find c(k), we multiply the dilation equation
(3.3.2.33) by V24(2t — n) and integrate after using the orthogonality condition:

Va2 /; $(£)(2¢ — n)dt = c(n).

From the orthogonality of the basis {¢(2¢)} it can be proved that we have double
shift orthogonality of the dilation coefficients c(k) (Strang and Nguyen, 1997):

Double-shift : Y c(k)c(k — 2m) = 6(m).

Because ¢(t) has unit energy:

Unit vector : Y [e(k)[* = 1.
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Therefore, the dilation equation has brought us back to filter banks—where the key
matrix is L = ({ 2)C. Double-shift orthogonality becomes LLT = I. The rows
of L contain the double shifts L;; = c(2i — j) (see equation (3.3.2.27)). Since the

subspace Wj is in V;, we can write the following equation for the wavelet:

N
w(t) = V2 dk)p(2t — k). (3.3.2.35)
k=0
The coefficients d(k) are the coefficients of a highpass filter. Note that because of
the orthogonality between V; and W, if c(k) is lowpass filter then d(k) must be a

highpass filter.

3.2.5 Wavelet analysis

The wavelet transform is a mapping process. According to the theory of wavelet
and multiresolution, the mapping is defined on the time-scale plane. There are two
variables associated with this plane: time and scale. Therefore after the WT, the

signal is divided into different scales of resolution, rather than different frequencies.

We will denote the transform level by j, Let us assume that we can decompose
the signal in J levels. According to the multiresolution theory, a signal f can be

represented as

f=A0=AJ+ZDj.

isd
Where Ap is the approximation at level zero (the signal), A; is the approximation
of the signal f at level J, and D; (j < J) are the details of the signal f in J
levels. The words ‘approximation’ and ‘detail’ are justified by the fact that A, is
an approximatipn of A, taking into account the ‘low frequency’ of Ay, whereas the

detail D; corresponds to the high frequency correction. Figure 3.7 shows a real
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Figure 3.7: 1-D wavelet transform of a signal in J = 3 levels.

unprocessed seismic signal transformed in J = 3 levels. (db4 wavelet is used for the
transformation). The original signal is shown in the first row. Second row shows

the approximation coefficients. The third, forth and last rows show the three level

detail coefficients of the signal.

The algorithm to compute the 1-D wavelet transform is also applicable to 2—-
D. The wavelet and scaling functions for 2-D can be obtained from one dimensional
wavelets by tensorial product. This kind of 2-D WT leads to a decomposition of
approximation coefficients at level j in four components: the approximation at level
j+1 and the details in three orientations (horizontal, vertical, and diagonal). Figure

3.8 shows an image (a seismic section) and Figure 3.9 shows the decomposition of

the image in J = 2 levels.

47



Figure 3.8: Synthetic data

The WT decomposition enables the wavelet analysis of a signal to be carried
out. The wavelet analysis is capable of revealing aspects of the data that other
signal analysis techniques miss, aspects like trends, breakdown points, discontinu-
ities in higher derivatives, and self-similarity (Strang and Nguyen, 1997). Further.
because it affords a different view of data from those presented by traditional tech-
niques, wavelet analysis can often compress or de-noise a signal without appreciable

degradation.

From the mathematical view, we can explain the ability of the WT of sup-
pressing part of the signal as follows. Let w be a wavelet with at least £+ 1 vanishing
moments (for j = 0,1,...,k, [2?w(z)dz = 0). If a signal f is a polynomial of de-
gree k then the coefficients C(a,b) = 0 for all @ and b (a, b correspond to scale and
time level respectively). Such a wavelet automaticallv suppresses the polvnomials.

The degree of f can vary with time, provided that it remain less than k. If [ is
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Figure 3.9: 2-D decomposition of the synthetic data in J = 2 levels. The top-right,
bottom-left and bottom-right corners of the image are the details (horizontal, ver-
tical, diagonal) of wavelet decomposition on j = 1. The approximation at level
Jj = 1 at the top-left corner is further decomposed in four components at j = 2:
approximation (top-left of the corner) and three details (top-right and bottom of
the corner).
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now a polynomial of degree k on the segment [, 8], then C(a,b) = 0 as long as the
support of the function —\}—&-wi‘—;‘—" is included in [o, B]. In this case, the suppression

is local. Likewise, suppose that on [a, 8] to which 0 belongs, we have the expansion

$2f2ll(0) . :ka(k) (0) + o(a).

fz) = f(0) +zf'(0) + k!

The f and g signals then have the same wavelet coefficients. The signal g is the
irregular part of the signal s. The wavelet transform systematically suppresses
the regular part and analyzes the irregular part. Another way of suppressing a
component of the signal consists of forcing certain coefficients C'(a, b) to be equal to
0. This is done by having selected a set E of indices (a threshold value), stipulate
the (a,b) € E, C(a,b) = 0, then synthesize the signal using the modified coefficients.

The compression features of a given wavelet basis are primarily linked to the
relative sparseness of the wavelet domain representation for the signal. The notion
behind compression is based on the concept that the regular signal component can
be accurately approximated using the following elements: a small number of approx-
imation coefficients (at a suitably chosen level) and some of the detail coefficients.
The compression procedure contains three steps: decompose, threshold the detail
coefficients and reconstruction. Figure 3.10 (Top) shows a seismic signal. If we
apply the WT to the signal and threshold the approximation and the detail coeffi-
cients, the remaining coefficients can still well represent the original signal. Figure
3.10 (Bottom) shows the reconstructed signal using the remained coefficients. The

reconstructed signal preserves most of the energy of the original signal.
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Figure 3.10: Wavelet compressing of a signal. Top: A original signal, Bottom: the
reconstructed signal using the thresholded coefficients.

3.3 Migration on WT filtered data

Migration using input based technique can be highly optimized by compressing the
input data. A new approach which implements this idea is discussed here. The
new approach uses the wavelet transform as the filter to discriminate in the input
section the dipping events, where the diffraction summation needs to be performed.
The computational aspects of migration can then be improved by using those WT
filtered data as the input for the migration.

51



=X —iM Ground
Time ::
x SN
v Refraction horizons
T. a
WT y
v
& . ‘ 00
T m}g;a%‘ scatter point
AljsT

ox

Figure 3.11: Schematic 2-D seismic time section diagram containing both a hypo-
thetical source and receiver at ground position 0, a point scatterer S in the sub-
surface, an apparent scatterer location A recorded at CDP point O on the time
section, and the CDP point M where the migrated recording of the scatter will be.
(Adapted from Robinson and Robbins, 1978.)

3.3.1 Introduction

Seismic migration is a process of moving (or migrating) subsurface events on a seis-
mic time section from their initial, erroneous common—depth point (CDP) positions
to their true positions. Any deviation from a transversely homogeneous acoustical
impedance structure in the subsurface produces seismic data which need to be mi-
grated. We are basically only concerned with acoustical impedance translations or
interfaces that are curved or dipping, although we make the usual assumption of
transverse homogeneity from those interfaces up to the earth’s surface. This point
can be approved from the well-established normal-moveout relation (Robinson and
Robbins, 1978). Assuming plane, horizontal refraction interfaces, one can easily

arrive at the following relationship regarding Figure 3.11:
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(22)2] 1/2

T = [Tg + 0 (3.3.3.36)

)

where v represent velocity along a vertical path from the ground (position M) to
the scatterer S. The apparent slope at image position A on the recorded seismic

time section, due to the point scatterer S, can be expressed from a differentiation

of equation (3.3.3.36):

4z
The migration correction consists of moving the recorded image point A(0,T) to

the point S(z',Tp), where

t' = (1/4)Tv*(6T /1), (3.3.3.38)
and
o (27)%y112
Ty= [T - —1—)5—] : (3.3.3.39)

For a horizontal event at image position A, §T//§ = 0. Then in equation (3.3.3.42),
z' = 0. Substituting z’ into equation (3.3.3.41), we get Tp = T. Therefore, the
image point A remains unmoved after migration. This implies that migration on
the whole seismic data ‘D’ can be approximated by migration on dipping events
‘Dy’.

We propose a method that uses the wavelet transform to isolate dipping
events. Then migration is done by performing Kirchhoff summation on the dipping

events.
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3.3.2 Method and algorithm

In the Kirchhoff summation approach to migration, the output image is built ac

cording to:

I(z,2) = / w(r, s,z,2) X D(r,s,T)dsdr. (3.3.3.40

3

Where
T =T(z,2,7)+T(z,2z3s).

T is sum of the travel time from the image point to the receiver and to the source,
D is the input seismic data, w is the weighting factor (see Section 2.2.1). In the
case of a post-stack time migration, the input data depend only on the midpoint

coordinate y = T2, and that equation (3.3.3.40) can be rewritten as
iy, T) = /,, w(y,z,T) x D(y, T)dy, (3.3.3.41)
or
iy, T) = /,, w(y, z,T) x D(y, T)dy + /, w(y,z,T) x D(y, T)dr.  (3.3.3.42)
Where T = T'(z,y), Da(y,T) and Dy(y,T) are dipping and horizontal energy on
input data, respectively. It was mentioned that horizontal energy on input data is

unmoved after the migration. Therefore we may approximate [, w(y,z,T)D(y, T)dy
as the aDy(y, T) and rewrite equation (3.3.3.42) as

I(y,T) ~ o x Dy(y,T) + / w(y,z,T) x Dy(y, s, T)dr. (3.3.3.43)
v



Here « is a constant which is used for compensating the loss of the energy due f
the fact that we do not perform a summation along hyperbola for the horizont:
events. We use the wavelet transform to filter the seismic section into two part:
one part contains the horizontal events and the events with small energy which ma
be ignored in migration; another part is where the migration needs to be performe:
(dipping events). In our method, the 1-D WT is applied to each function f(z) i
the seismic data set D(t,z) (along the spatial (z) direction). Therefore the dat:

space is mapped into the multiresolution approximation
Dt,z = WDt,:c, (33344

where W is a compactly supported, orthonormal db4 wavelet (Daubechies, 1988).
Assuming f(z) is a signal in D, ,, the horizontal events and the events with small
energy are presented on f(t) as certain continuous energy. The dipping events cause
a rapid change of the energy of f(z). This change is enhanced by the wavelet
transform. Therefore the wavelet coefficients tend to be big for locations where
dipping events exist (67'/éz # 0). If we discard all the approximation coefficients
and assign a threshold value for the detail coefficients, a truncation version of Ijt,z,
D

txo

can be obtained. The inverse WT of E;’z is

D/, =wTD, (3.3.3.45)

t,x)

where [A);” . is considered to be the energy of dipping events (Dg). D—D" is considered

to be the energy containing flat events (D}). Therefore the migration according to

equation (3.3.3.43) can be carried out.

If there are a total of nx * nt points in the original data, the number of

operation for the standard Kirchhoff time migration method is proportional to nz *
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nt*na (na is aperture width). By assuming that after WT filtering the points whex
migration needs to be done is + of the original points, the operation count of th

new method is proportional to nz * nt x na * +.

3.3.3 Synthetic examples

In Figure 3.12 (Top Left), we illustrate a synthetic zero-offset seismic section. Figure
3.12 (Top Right) is the migrated image using the standard Kirchhoff migratior
algorithm. All the points in the original data set (12100) are used in the hyperbola
summation. Figure 3.12 (Bottom Left) is a migrated image using the new approach.
The threshold is set to be 0.005, and 8296 points are used for summation. The
migration is very similar to the standard migration using all the points. Figure
3.12 (Bottom Right) is also a migrated image using the new approach. In this case,
the threshold is set to thr = 1, and 552 points are used for the migration. The
migration result is poor since there are unsufficient remaining wavelet coefficients
locate the dipping energy. We also examined the new approach by setting different
threshold values. It was realized that the different threshold values affect the quality
of the migrated image. Figure 3.13 (Top Left) is the migrated image by setting the
threshold to 0.01. Figure 3.13 (Top Right) is the recovered detailed image which
is used to isolate the dipping events for Figure 3.13 (Top Left). In this example,
6622 points are used for the summation. In Figure 3.13 (Bottom Left), the image is
obtained by using thr = 0.18. Figure 3.13 (Bottom Right) is the recovered detailed
image for the Figure 3.13 (Bottom Left). In this case, 2006 points are used for
the summation. Figure 3.14 (Top Left) and (Top Right) are the migrated image
and recovered detail coefficients, respectively, with thr = 0.25 in this example, and

1880 points are used for the summation. In the examples showed in Figure 3.14



(Bottom Left) and (Bottom Right), the threshold is 0.4 and 1127 points are used
in the summation. In Figure 3.15 (Top) we used thr = 0.5, and 942 points were
used in the summation. In Figure 3.15 (Bottom) we used thr = 3, and 76 points
were used for the summation. By comparing those examples, we found that 2100
points, 1/6 of the total number of points (12100) in the original data are sufficient
to properly image the zero—offset section (Figure 3.13 (Bottom)).

3.3.4 Conclusion

In this section, after reviewing the theory of the wavelet transform, a new approach
for migration has been developed. This approach performs migration on WT com-
pressed (filtered) seismic data. The computational cost of migrating data is reduced.
The new approach is an output based Kirchhoff migration. This is suitable for post-

stack time migration.

The wavelet transform filtered image provides a very sparse representation
of our data. This representation enables us to minimize the number of points where

summation along hyperbolic paths is required.

We tested the approach on synthetic zero—offset data. It is found that the
quality of the migrated image is related to the threshold value used to filter the
coefficients. By choosing a suitable threshold value, the migration can be efficiently

carried out without degrading the final image.

It is important to stress that this technique does not attempt to replace
existing post-stack migration algorithms, which are very efficient. This technique

explores the plausibility of using WT filtered data to migrate seismic events.
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Figure 3.12: Top Left: Unmigrated seismic section. Top Right: The migrated image
using ordinary Kirchhoff migration. Bottom Left: Migrated seismic section using
thr = 0.005. Bottom Right: Migrated seismic section using thr = 1.
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Figure 3.13: Top Left: Migrated seismic section using thr = 0.01. Top Right: the
remained detail coefficients by setting thr = 0.01. Bottom Left: Migrated seismic
section using thr = 0.18, Bottom Right: the remaining detail coefficients obtained

by setting thr = 0.18.
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Figure 3.14: Top Left: Migrated seismic section using thr = 0.25, Top Right: the
remained detail coefficients by setting thr = 0.25. Bottom Left: Migrated seismic
section using thr = 0.4, Bottom Right: the remaining detail coefficients obtained

by setting thr = 0.4.
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Figure 3.15: Top Left: Migrated seismic section using thr = 0.5, Top Right: the
remained detail coefficients by setting thr = 0.5. Bottom Left: Migrated seismic
section using thr = 3, Bottom Right: the remaining detail coefficients obtained by

setting thr = 3.
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CHAPTER 4

Matching Pursuit Migration

and Inversion of Travel Time Tables

4.1 Introduction

In the previous chapter, we presented a technique to decompose a signal in terms
of temporal and scale attributes. The wavelet transform provides a way to obtain
a sparse representation of our data. In this chapter, we introduce a less elegant
algorithm to decompose a signal in a set of waveforms or atoms which also seeks a
sparse representation of the data. This algorithm, called matching pursuit (MP),
was developed by Mallat and Zhang (1993) and applied in various scientific scenarios.
In image processing, it was used by Neff et al. (1998), and Al-Shaykh et al. (1999)
to compress video images. In seismology, the MP algorithm has been applied by
Chakraborty and Okaya (1995) to visualize the non-stationary data behavior due

to attenuation.

In seismic exploration, Wang and Pann (1996) have first suggested a MP
algorithm to migrate seismic data. In their approach, the seismic traces are decom-
posed as a superposition of waveforms that are obtained via the MP algorithm. This
approach focused on applications to post-stack time migration, where the migration
operator has an analytical expression. This enables them to use an input migration

technique. Li et al. (1998) introduce a new algorithm where the matching atom is
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estimated from the data. They have also tested the algorithm in problems analytical

expressions exist for the traveltime functions needed to migrate the data.

In this thesis, a novel MP algorithm to process pre-stack data is studied.
In particular, we combine MP with the inversion of traveltime tables to perform

seismic migration on the sparse representation of the seismic data.

4.2 The matching pursuit Algorithm

4.2.1 Introduction

The term matching pursuits refers to a greedy algorithm' which matches signal
structures to a large, diverse dictionary of functions. The technique was proposed
by Mallat and Zhang (1993) with an application to signal analysis. They give the
definition of matching pursuit as an algorithm that decomposes any signal into
a linear expansion of waveforms that are selected from a redundant dictionary of
functions. These waveforms are chosen in order to best match the signal structure.
Using the terminology introduced by Mallat and Zhang (1993), a dictionary is a
collection of parameterized waveforms D = (¢, : v € I'). The waveforms g, are
discrete-time signals of length n called atoms. Depending on the dictionary, the
parameter -y can have the interpretation of indexing frequency, in which case the
dictionary is a frequency dictionary, or of indexing time/frequency jointly, in which
case the dictionary is a time—frequency dictionary (Chen and Donoho, 1996). The
dictionaries are complete in the case where they contain exactly n atoms, and is over

complete in case where they contain more than n atoms. The wide scope of patterns

! As pointed out by Strang (1986), “greedy algorithm: Do the best thing at every step. In other
words, ignore all difficulties that might come later and make the optimal choice now.”
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embedded in complex signals motivates decompositions over large and redundant
dictionaries of waveforms. A complex signal may not be very well linearly expanded
on a signal basis. For example, a signal f can be expanded on a Fourier basis which

is a single basis via an inverse Fourier transform,

f@t) = 51; /+ : F(w)e ™“tduw. (4.4.2.1)

It is clear that a Fourier basis provides a poor representation of a time-localized sig-
nal. Another example is the wavelet bases (Daubechies, 1990). As mentioned before,

the decomposition of a signal via wavelet bases is a time—frequency decomposition:

Wi)a,b) = <fig™>
= / f(t)a‘l/%,b?dt, (4.4.2.2)

where
pa(e) = a0,

with a indicates frequency localization and b indicates time localization. The wavelet
transform decomposes a signal over time—frequency atoms of varying scales, and the
scale factor is inversely proportionally related to the frequency parameter. The
wavelet bases are not well adapted to represent functions whose Fourier transforms
have a narrow high frequency support. In particular, signals that have important
variances in their localized frequency attributes are a problem for wavelets. In this

case, a more flexible representation is necessary.



4.2.2 The algorithm

A matching pursuit is a greedy algorithm (Mallat and Zhang, 1993) that chooses
at each iteration a waveform that is best adapted to the signal. Matching pursuit
starts from an “empty model” and builds up a signal model an atom at a time, at
each step adding to the model only the most important new atom among all those
not so far in the model. Mallat and Zhang (1993) gave a mathematical description
of the matching pursuit procedure. In order to match the component of a signal,
matching pursuit is done by successive approximations of signal f with orthogonal
projections on waveforms g.¢ from a dictionary D. The signal f can be decomposed

into

where R?f is the residual of the signal after approximating f with g,o. Since g,¢ is

orthogonal to R°f, we can write
I £ IP=I< frov0 >+ | RFI?. (4.4.2.4)

To minimize || Rf ||, gy0 € D is chosen such that |< f, g, >| is maximized. The

waveform g, is said to be the best if
[< f190 >[2 asup |< .9, >], (44.2.5)
v

where « is an optimality factor that satisfies 0 < o < 1. A matching pursuit is
an iterative algorithm that sub—decomposes the residue Rf by projecting it on a

waveform g,; € D that matches Rf almost at best. This procedure is repeated
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while trying to minimize the energy of the residue R"f by selecting a best waveforn

go(n+1) €ach time and the following residue R™*!f is obtained
R*f =< R“f,gyn > gm + R**'f, (4.4.2.6)
which defines the residue at the order of n + 1. Since the R"*! is orthogonal to Gyn
| B*f |P=|< R*f, g, >|* + || R*"'F |2, (4.4.2.7)

when the procedure is iterated up to the m*® order, the signal f is decomposed into

the following concatenated sum

m—1
f=3 (Bf-R™f)+R"f. - (4429
n=0 )
Equation (4.4.2.6) yields
m~—1
f=> <R‘f,gm>gm+R"/, (4.4.2.9)
n=0

and || f ||? is decomposed in a concatenated sum

m~—1

WFIP=230 CHRFIP = I B 112 )+ (LB S 1?. (44.2.10)
n=0
We can see that the energy is conserved, this can be proved from equation (4.4.2.7):

m—1
I FIP=2 I<R*f,9m >+ R"f . (4.4.2.11)
n=0

66



- S L2 o LI

.-

Ll i1l

rrrrrrroTrTT

= Ses Tew e e

R AVA

113111
]
§
L
O
L

Figure 4.1: MP decompositions of a signal. First row shows a synthetic signal em-
bedded with structures of spike, cosines and rectangular box. Second row shows the
MP coefficients of the signal. The third row shows the atoms from a dictionary con-
sisting of spikes, cosines of different angular frequencies, rectangular boxes. Those
atoms are used for the MP projection and can well represent the signal.

Figure 4.1 shows a MP decomposition of a signal with atoms selected from a dictio-
nary that consists of spikes, cosines of different angular frequencies and rectangular

boxes.
4.2.3 Estimating the atoms using the maximum entropy

method

In this thesis, the atoms (waveforms) used for MP are estimated using the maximum
entropy method (MEM). Bear in mind, that in most MP applications the atoms are
given and not estimated. The MEM is used to compute the power spectrum of the

67



wavelet. The phase is assumed to be zero?. This wavelet is considered to be th
waveform that best matches the structure of the seismic trace. We have to stres
that other atoms are plausible, but a zero phase function that resembles the seismi

pulse will lead us to a very efficient representation.

The Maximum Entropy method

The MEM has been developed by Burg (1967) and also been suggested by Parzen
(1969), who refers to it as an auto-regressive spectral estimator. Before the intro-
duction of MEM, all of the usual methods of spectral analyses have been associated
with window functions which are independent of the data or the properties of the
random process analyzed. One difficulty with conventional methods is that the
window function does not depend upon the true spectrum. Therefore misleading
or false conclusions can sometimes be drawn when the estimated spectrum is used.
The MEM method, unlike the conventional methods for power spectral density es-
timation, adapts to the actual characteristics of the signal under analysis (Lacoss,
1971). The maximum entropy method attempts to fit, in a least-squares sense, an
autoregressive (AR) model to an input time series. Assuming that the data z; (the

seismic trace ) are generated by the process
Ty =€ — A1Tg—1 — A2Tg—2 — °°* — AmTt—m, (4-4~2-12)

where ¢, is uncorrelated random noise with zero mean and variance o2. Let ay = 1,

equation (4.4.2.12) can be rewritten

Tt + 1Ty + 0Te2 + -+ AT = €t (4.4.2.13)

2We assume that after spiking deconvolution (Yilmaz, 1987) the resulting seismic wavelet is a
zero phase time series.




The sequence a; with ay = 1 is actually a prediction error filter. Those coefficients
ag, a1, - -,a, are also called AR parameters, which the MEM approach attempts
to estimate. It has been pointed out by Ulrych and Bishop (1975) that the AR
representation is equivalent to that time series which is consistent with known auto-
correlation measurements, but which has maximum entropy. From Shannon’s theory
of information, the entropy of a giving time series is proportional to the integral of

the logarithm of its power spectrum. It seeks to maximize the integral

+wn
/ log ®(w)dw, (4.4.2.14)

—Wn

with the constraint that

/ e O (w)e™*Ptdw = ¢y (4.4.2.15)

—Wn

Equation (4.4.2.15) is the Wiener-Khintchine theorem (Robinson, 1967) relating
the power spectrum ®(w) to the autocorrelation function ¢;. Here At is the time
increment, k is a discrete time index, w the angular frequency, and wy is folding

frequency wy = w/At. Based on these theorems, the MEM spectral estimate

om
(w) = A()’ (4.4.2.16)

where A,, is (m + 1)-length minimum delay prediction error (PE) filter, o2, is the
error variance for the filter A,,. Therefore the maximum entropy representation of

the observed data is actually an mth-order autoregressive (AR) process.

Burg (1967) developed a technique to estimate the PE filter A,, from the
data rather than from the autocorrelation function. A two—term PE filter (1,a) of

the time series z; is given by the choice of @ which minimizes
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N
E(a) = Z l Tt +azxy !2 . (44.21l
t=1

To avoid | a | being greater than unity, Burg uses another formula that minimizes th
average of the sum of both the mean square forward and the mean square backwar.

prediction error. This is

N
E(@) =Y | 2.+ azs—q |° + | Tem1 + a7 |, (4.4.2.18

t=1
which always leads to | a | less than unity. The power spectral estimated associatec
with this value of @ is R = 1/[(1 + @/Z)(1 + aZ)).® Burg also noted that Levinsor
recursion always gives minimum-phase filters. In the Levinson recursion a filter of

order 3 is built up from an order of 2 by

1 1 0
a | =lal]—¢Cia
ao 0 1

Thus he takes a to be given from equation (4.4.2.18) and then does a least-squares
problem to solve for c. This is done in such a way as to ensure that | ¢ | is less than
unity, which guarantees that A(z) = 1+ a,Z + a;Z? is minimum-phase (Claerbout,
1976). Then equation (4.4.2.18) is rewritten as

N

E(a1, (12) = Z ' T+ a1Te—1 + A2T—2 l2 + I Ti-2 + 01T¢—1 + Q2T IZ (4.4.2.19)
=2

or

N
E(C) = Z | T + ATy — C(E.’Et__l + Ti_2 !2
t=2

+ | Tya + aTi; — c(@T_; + ) |* - (4.4.2.20)
3Here, we use the Z transform, the Fourier transform can be obtained by replacing Z = e7*.
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Denote the error in forward prediction of z; —az,_; by e; and and error on backward

prediction z,_5 + @z¢_; by e_, equation (4.4.2.20) becomes

E = Y |leg—ce- P+ |e-—cey [?
t

= Y (es —ce_)(ey —ce_) + (e— —c&y)(e- —cey).  (44.2.21)

Setting the derivative with respect to ¢ equal to zero

cm F2eZely (4.4.2.22)
dt€reyp +eE_e_

Since the length of the vector e, +e_ is always positive |, ¢ | is alway less than unity.

If define e, and e_ as

ey — ey —ce_

e- — e_—Tey

The forward and backward prediction errors of the three—term filter (1,a},a}) =
(1,a; — ca@;, —c). Return to equation (4.4.2.21) and proceed recursively, e_ and
e+ gradually become unpredictable, then a filter A(Z) which filters X (Z) with a
output of white noise is found. Since the output has a constant spectrum, the
spectrum of the input must be the inverse of the spectrum of the filter. Indeed, this
effective mechanism of Burg spectral estimation is to compute a PE filter and look
at the inverse of its spectrum. The most important property of a prediction—error
filter is that its output tends to a white spectrum. No matter what the input to
this filter, its output tends to whiteness as the number of the coefficients tends to
infinity. Thus, the PE filter adapts itself to the input by absorbing all its color. The
Burg’s algorithm has a wave-propagation interpretation: in a layered medium the

parameter c; has the interpretation of reflection coefficients; the e, and e_ have the
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interpretation of down-going waves; and the whole process of calculating c; amounts

to downward continuing surface seismograms into the earth, determining an earth

model ¢ as you go (Claerbout, 1976).

Examples

In our MP procedure, the MEM is used to compute the power spectrum of a seismic
trace. The MEM filter is a minimum phase filter (Claerbout, 1976). However, as
mentioned before, we prefer to use a zero phase wavelet. The MEM is a parametric
spectral estimator which gives a smooth amplitude spectrum of the wavelet. The
amplitude should be a smooth function because the wavelet is usually a short and
smooth time series. Figure 4.2a shows an estimated wavelet (atom) using MEM
from a real seismic trace (Figure 4.2b) with 1000 points. Figures 4.2c, e, and g show
the resulting MP coefficients when 10, 20, and 50 atoms are used for the MP pursuit
projection. Figures 4.2d, f, h are the reconstructed traces using 10, 20 and 50 atoms,
respectively. This is done by convolving the MP coefficients with the wavelet (atom).
The reconstructed traces are only an approxiination of the original traces. We can
see that when 10 atoms are used for MP projection, the reconstruction only retains
the six strongest reflections of the original trace. When 50 atoms were used, the
approximation was drastically improved. In Figure 4.3 (Top), we illustrate a real
seismic section with 101 traces and 1000 time samples each. We performed the MP
decomposition for each seismic trace using 100 atoms. The sparse representation is
shown in Figure 4.3 (Bottom) which preserves most of the coherent energy of the

original data (Figure 4.3 (Top)).
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Figure 4.2: Matching pursuit of a seismic trace: (a) The estimated wavelet (atom)
from a seismic trace using MEM. (b) The seismic trace. (c) and (d) MP coefficients
and reconstructed trace using 10 atoms. (e) and (f) MP coefficients and recon-
structed trace using 20 atoms. (g) and (h) MP coefficients and reconstructed trace
using 50 atoms.
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4.3 Matching pursuit migration

and inversion of travel time tables

It was shown that using a MP algorithm seismic data can be compressed into :
sparse representation of the original data. Therefore, migration may be carried out
efficiently by using MP compressed data. Wang and Pann (1996) and Li et al. (1998
have developed an approach where the MP algorithm is used for time migration
However, the situation is different for depth migration. In this section, we focus on

an implementation of the matching pursuit algorithm to depth migration.

4.3.1 The MP migration algorithm

In the MP algorithm, the seismic traces are decomposed to a superposition of wave-
form or atoms. If we denote D(r,s,t) the seismic trace obtained with a receiver r

and a source s and apply the MP decomposition to the trace, we have
D =< D, g, > gy + R°D. (4.4.3.23)

After m iterations of the procedure, the trace is decomposed into

m—1
D=) <R'D,gyn > gm + R™D. (4.4.3.24)

n=0

A seismic trace at a position (r, s) (receiver, shot) can be expanded in terms of

wavelets using MP

D(r,s,t) = Nﬁ’) Ai(r, s)w(t — ti(r, s)). (4.4.3.25)

=1
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D(r, s,t) is an approximation to the true seismic trace after matching. Where N (r,s
is number of atoms matched for the trace (r, s), A;(r, s) is the coefficient for the i —¢/
atom for trace (r,s), t;(r,s) is the time where we have matched the i — th atom
and w(t) is the wavelet (atom). In our code, the wavelet is estimated from eacl
trace using the MEM. Therefore, the atom should be noted as w(¢,r,s). Back tc
the Kirchhoff formula that has been shown in Chapter 2:

I(z, 2) =/ W(r,s,z,2) X D[r,s,T(z,2,7) + T(z, 2,s)] ds dr. (4.4.3.26)

>

Replacing D|r, s, T(z, z,7)+T(z, 2, s)] by its approximation given by equation (4.4.3.

o N(rs)
D(r,s,T(z,2,7) + T(z,2,8)) = Y, Ai(r,s)w[T(z,2,1)+T(z,2,5) —ti(r, 5)].

i=1
| (4.4.3.27)

By substituting equation (4.4.3.27) into the Kirchhoff formula (equation (4.4.3.26)),
we obtain:
. N(r,s)
I(z,2) = / W(r,s,z,z) x Z Ai(r, s)w[T(z, 2,7) + T(x, 2, 8) — ti(r, s)| dsdr
T8 =1
(4.4.3.28)

The weighting operator W (r, s, z, z) can be replaced by two operators, one acting on
each input trace and another on each output sample. Therefore, the multiplication
with w(r, s, z, 2) can be implemented as pre and post-summation operations (Gray,

1998). In this case, equation (4.4.3.28) can be replaced by

. N(r,s)
Iz,2) =) Y Ai(r,s)w[T(z,2,7) + T(z, 2,8) — ti(r, )] (4.4.3.29)

7,8 $=1
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Here integration is replaced by summation over all the traces.

At this stage, it is important to realize that the above summation can b
carried out using 2 different algorithms. In the first algorithm, matching pursui

migration (MPM), we have:

e Algorithm 1

for each x,y pixel

for each triplet r,s,k

image(x,z) = image(x,z) + A(k,r,s)* w (tray(r,s,x,z)-t(k,r,s))
end

end

In this algorithm, tray denotes the traveltime. According to this algorithm, for
each trace the migration is performed by going through all the output (z,y) pixels
to find where the triplets or atoms (which are used to represent the trace) need
to be migrated. This algorithm is not efficient because of the loop on z,y. Another
algorithm is given by the following pseudo—code. I will call it ‘MPM&ITT’ (matching

pursuit migration and inversion of traveltime tables).

e Algorithm 2

for each triplet r,s,k
find the x,z pixel where the triplet needs to be mapped
image(x,z) = image(x,z) + A(k,r,s)*w(tray(r,s,x,z)-t(k,r,s))

end



It is clear that to find the mapping (r, s, k) ¢* (7, z) the traveltime tables need to b
inverted. Algorithm 2 is an algorithm which combines MPM and traveltime tabl

inversion (MPM&; ITT), and the cost of finding where to map the atom needs to b

analyzed.

4.3.2 A method for inverting traveltime tables

Traveltime tables

A traveltime table for a receiver—source position is a matrix that can be represented

as

LT || Ty

-

Given a time T we want to know which are the values z — 2 that corresponds to
the entry T; in the matrix. Since we do not have an analytical manner to invert the
traveltime table we will do it numerically using a search method. Bear in mind that
we want to go from a traveltime table of the form f(z, 2,7, s) = T} into a traveltime

table of the form F(Tj,r,s) = (z, 2).
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Shell method

After applying MP to a trace, the k atoms that have been matched, their correlation
coefficients and time positions ¢(k, r, s) are stored in the computer disk. The atoms
are in an unordered array for each trace corresponding to a receiver—source pair
(r,s). Therefore, a fast sorting method can help improve the efficiency of finding

the (z, z) positions corresponding to these atoms.

There exist several sorting methods. Quicksort and Heapsort are known
to be the best algorithms (Sedgewick, 1988). If one needs to sort N elements,
N > 1000, Quicksort and Heapsort are good candidates to perform the task in an
efficient way. If N < 50, roughly, Shell’s method can be used. In the case of N < 20,
Straight insertion is also a very fast alternative (Press et al., 1992). In our code,
we usually match about 50 atoms, therefore, the Shell method is efficient enough
for our sorting algorithm and its operation count is proportional to k? (here k is
the number of atoms). In our algorithm, the atoms are sorted in time according to

increasing order.

Index sequential method

In the procedure of inverting the traveltime table, we used the index sequential
method to search in the traveltime table the (z, z) pixels where the triplets (k, s, 7)
need to be mapped. Figure 4.4 shows the scheme that we have implemented to search
the traveltime table. The index sequential method first searches in the traveltime
table the (z, 2) pixels corresponding to the first and last atoms (the operation count
is proportional to 2 * nz xnz). Those pixels (z, z) are labeled (indexed). Then only
between those labeled positions in the traveltime table, the next search is carried

out. A new search is done for the second atom and the one before the last (the
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operation count is proportional to (nz * nz — l;) * (nz x nz — l3) where [, and [,
are the labeled positions), and the new pixel positions are labeled to be used in the
next search. This procedure is iterated until all the pairs (z, z) have been found. In
each iteration, the search is performed in a smaller subset of the traveltime table,
therefore the index sequential method is a nk*xnx xnz — (I; +la + - - - +lx—2) process
and the computational cost of Algorithm 2 is nk*nz*nz — ([, +lp+- - -+l o) + k%
Since k? is usually a small value compare to l; + - - - + lz_5, Algorithm 2 is faster

than Algorithm 1 whose operation count is proportional to nk * nz x nz.

4.3.3 Examples
Marmousi example

We carried out output-based post-stack depth migration on the Marmousi model
(Versteeg, 1994). The Marmousi model is a 2D synthetic data set that is useful in
determining an algorithm ability to image seismic data. Figure 4.5 (Top) is the un-
migrated Marmousi model which is computed using finite-differencing method with
a Marmousi velocity model. The velocity model has been decimated and smoothed
to a size of 243 x 495 (Figure 4.5 (Bottom)). We also compare the migrated section
using the standard Kirchhoff migration method (Figure 4.6) and using MPM&ITT.
Figure 4.7 and Figure 4.8 illustrate the migrated sections using MPM&ITT. Dif-
ferent numbers of atoms were used in the MP approximation. Figure 4.7 (Top) is
the migrated image using 5 atoms. The image is not clear enough to display the
main geological structures. Figure 4.7 (Bottom) is the migrated image using 10
atoms. Figure 4.8 (Top) and (Bottom) show the migrated images using 20 and 50
atoms. We can see that with N = 50 the MP migrated image starts to look very

similar to the standard migration. The strong artifacts in the migrated image are
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Figure 4.4: The searching scheme for TTT.
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due to the traveltime tables which are not accurate enough. The traveltime tables
were obtained by solving the Eikonal equation (Vidale, 1988). The problem with
the grided Eikonal solver is its inability to control the propagation angle which may
result in affecting a migration by producing artifacts (Gray, 1994).

Pre—stack example

We also carried out pre-stack depth migration on synthetic data with 10, 50 and
200 shots using the standard Kirchhoff method, MPM and MPM&ITT algorithm.
In Figure 4.9, we illustrate a one shot gather (Left) and its approximation after
matching pursuit with 8 atoms (Right). In Figure 4.10, we portray the migrated
image using ordinary Kirchhoff migration (Top) and using MPM&ITT (Bottom).
Although Figure 4.10 (Bottom) is only a approximation of Figure 4.10 (Top), it
shows all the reflection events. The time reports for the standard Kirchhoff migra-
tion, MPM, and MPM&ITT are shown in Table 4.1. The first column shows the
number of shots we used to migrate the data. The second column is the running
time for the Eikonal equation solver, which is used to provide the traveltime tables.
The 3th and 4th columns are the running times for matching pursuit and for migra-
tion in conventional MP migration. The 5th, 6th and 7th columns are the running
times of matching pursuit, inverting the traveltime table and migration in our new
method. The last column contains the time for the standard Kirchhoff migration.
We see from Table 4.1 that the new approach MPM&ITT is faster than the other

two algorithms.
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Figure 4.5: Top: Marmousi unmigrated section. Bottom: Smoothed Marmousi

velocity model.
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MP migration
Number MPM MPM&ITT Ordinary
of shots | Eikonal | MP | Migration | MP | Search | Migration | migration
10 90 2.5 8.3 2.5 4.3 1.1 9.3
50 436.1 12.4 61.6 12.3 | 30.9 11.1 68.9
200 2037.3 | 51.4 279.1 53 | 139.6 50.9 301.4

Table 4.1: Time reports for the standard Kirchhoff migration, MPM, and
MPM&ITT. (These tests were obtained using a SGI Origin 2000 computer.)

X{m)

Depth (m)

Figure 4.6: Migrated image using the standard Kirchhoff migration method.
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Depth (m)

Figure 4.7: Top: Migrated image using MPM&ITT and 5 atoms are used for MP
approximation. Bottom: Used 10 atoms for MP.
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Figure 4.8: Migrated sections using MPM&ITT. Top: Used 20 atoms for MP. Bot-
tom: Used 50 atoms for MP.
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Time (sec.)

Figure 4.9: Left: One shot gather. Right: MP approximation of the shot gather
using 6 atoms.

4.4 Summary

In this chapter, we have discussed the efficiency of Kirchhoff migration on matching
pursuit (MP) compressed data. We presented a fast migration approach that is
suitable for output based depth migration. In this approach, a seismic trace is
decomposed into a linear expansion of adaptive waveforms using a matching pursuit
procedure. The Maximum Entropy technique is used to estimate the waveforms that
best match the structure of a seismic trace. Then, searching and sorting methods
are used to invert the associated travel time tables and to find the positions in
the depth domain to where the waveforms will be migrated. Finally, moving those

waveforms to a depth image finalizes the migration process.
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Figure 4.10: Migrated image using the standard Kirchhoff migration (Top) and
MPMEITT (Bottom).
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CHAPTER 5

Conclusion and future studies

This thesis examines the problem of migrating seismic data that has been com-

pressed using the wavelet transform and matching pursuit algorithms.

In Chapter 3, the theory of wavelet transform is presented, and some practical
aspects are discussed. The WT is used to isolate seismic diffraction in post-stack
data, and seismic migration is applied to the isolated energy. The wavelet transform
is useful for input based (time migration), where there is an analytical expression

for the migration operator.

The proposed method only explores the wavelet transform as a tool to per-
form seismic data compression. We also realize that WT can be an attractive alter-

native to solve partial deferential equations.

In Chapter 4, we discuss the efficiency of Kirchhoff migration on matching
pursuit (MP) compressed data. We present a new fast migration approach that is
suitable for output based depth migration. In this new approach, a seismic trace is
decomposed into a linear expansion of adaptive waveforms using a matching pursuit
procedure. The waveforms are either Ricker wavelets or estimated wavelets using
the Maximum Entropy Method. Then, search and sort methods are used to invert
the associated travel time tables and to find the positions in the depth domain to
where the waveforms will be migrated. Finally, the seismic migration is done by

moving those waveforms in depth. The new approach MPM&ITT is appropriate
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for depth migration (output based techniques). The new approach was tested both
on synthetic post-stack and pre-stack data. The MPM&ITT, is faster than the
ordinary MP migration method and the standard Kirchhoff migration method when
the output-based depth migration technique is used. Besides, the new approach is
quite flexible since when a few atoms are used, it provides a migrated image of
the strongest reflection events present in the data. When we increase the number
of atoms, the MP migration yields results which are comparable to the migrated

image using the standard Kirchhoff migration method.

We also realize that the MP migration algorithm can be improved by con-

sidering the following aspects:

e 2D matching pursuit:
Seismic data can be further compressed by using a 2D scheme in the MP algo-
rithm. In this case we need to define the domain in which the MP algorithm

should operate. i.e., shot-receiver domain or midpoint-offset domain.

e Computation of traveltime tables:
A algorithm that produces naturally ordered traveltimes may be useful to

improve the computational cost of MP migration.

Hopefully, future work on MP migration can yield algorithms that may become

standard methods to image seismic data in the oil and gas industry.
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