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Tutorial

Signal and noise separation: Art and science

Tadeusz J. Ulrych∗, Mauricio D. Sacchi‡, and J. Michael Graul∗∗

ABSTRACT

The separation of signal and noise is a central issue in
seismic data processing. The noise is both random and
coherent in nature, the coherent part often masquerad-
ing as signal. In this tutorial, we present some approaches
to signal isolation, in which stacking is a central concept.
Our methodology is to transform the data to a domain
where noise and signal are separable, a goal that we at-
tain by means of inversion. We illustrate our ideas with
some of our favorite transformations: wavelets, eigen-
vectors, and Radon transforms. We end with the notion
of risk, baseball, and the Stein estimator.

INTRODUCTION

The purpose of this article is to present, in tutorial fashion,
some approaches to the ubiquitous problem of signal and noise
separation that we have found useful. Since it is not detail that
we are primarily interested in presenting, we adhere to the
reasonable principle of parsimony, both in words and in math-
ematical expression. We begin with some condensed notation.

Let D represent the record of our seismic experiment in
whatever form. D contains all the information that is at our
disposal. Our task is to chisel away at D to unearth S, the
signal therein contained. We are artisans, vainly following
Michelangelo. D is the rock, S is our David. Of course, since we
all know the adage “one man’s signal is another man’s manage-
rial rebuke,” we must define S. We define signal as that energy
that is coherent from trace to trace. Noise, N, on the other
hand, is that energy that is incoherent from trace to trace. Un-
fortunately, the most expensive noise is also spatially coherent,
and we must modify the above definition. We define signal as
that energy that is most coherent and desirable for our inter-
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pretation of primary reflected arrivals. For example, Rayleigh
waves and multiples can be coherent “undesired signal” or
“noise,” yet such arrivals would be undesirable for an analysis
of primary reflections. This definition immediately introduces
one of the central themes of this article: resolution. In order
to extract the signal from the background of noise, we must
be able to resolve the difference, often very subtle and highly
dependent on the acquisition, between the coherent signal and
noise. We can now write the model,

D = S+Nc +Nr , (1)

where Nc and Nr represent the coherent and incoherent noise
components, respectively, and Nc + Nr = N. From now on,
for parsimony of notation, the quantities D, S, and N represent
matrices.

In the permanent and ubiquitous task of the identification
and suppression of N, two processes share the honors for most
significant quantum leaps forward. Variable area plotting [ac-
cording to one of us (Graul)] and stacking. It is the latter that
this article is mainly about.

METHODOLOGY

D lives in space and time, the x-t domain. It is characteristic
of this domain that S and N are intertwined and, consequently,
are not only difficult to separate but also to identify. In order
to accomplish these tasks, D must be mapped into a domain
where the characteristics distinguishing signal and noise map
S and N into separate spaces. In operator form,

T m = d, (2)

where T is the linear or nonlinear transformation, m is the
vector of model parameters in the transformed domain, and d
is a data vector realization from D.
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The transformation expressed by equation (2) is guided by
a principle that is, to our minds, fundamental and lucidly ex-
pressed by the late Edwin Jaynes, whom we honor for his
many profound contributions. Jaynes wrote (personal commu-
nication, 1981), “A problem in inference that is posed as an
overdetermined problem is badly posed.” That is, the model
m is nonuniquely related to the data. As such, it may be re-
covered only when the inverse transformation is regularized,
a topic we discuss in more detail later. A more common way,
perhaps, of expressing this nonuniqueness is to say that the in-
verse problem is underdetermined, m contains more elements
than d (fewer equations than unknowns).

Now comes the second part of our methodology. The manner
of regularizing the transformation in equation (2), expressed
in a form that emphasizes the inverse nature of the problem,
follows Bayesian principles. We impose a priori information by
means of Bayes’ theorem, and in this manner obtain, from an
infinity of possibilities, that model which honors the data and
satisfies our prior beliefs. A pictorial representation of our two
part methodology is illustrated in Figure 1.

PRINCIPLES OF STACKING

In much of what follows, the transformation in equation (2)
is linked in some indirect, often obscure manner, to stacking,
and we find it illuminating to deal briefly with the essentials
of this concept. Let us suppose, for purposes of illustration
only, that in equation (1) Nc= 0, S is perfectly aligned and,
most fortuitously, N is such that at every time sample its av-
erage value, taken spatially, is zero. Then, even with noise of
Himalayan proportions, S may be recovered exactly by the
simple process of stacking. In a less perfect world, signal stacks
constructively and random noise destructively such that, for
the special case of Gaussian noise, the noise amplitude is at-
tenuated by the square root of the number of traces. Stacking
involves a very special estimation of the first moment of a prob-
ability distribution. It is the maximum likelihood estimator,

FIG. 1. Pictorial representation of the processing methodology.

which we write as

δ0(x) = 1
M

M∑
i=1

xi , (3)

where the xi are M samples of the random variable x. δ0 is a
very special estimator indeed. Statisticians have shown that,
given x|µ ind∼ N(µ, 1) (symbolically representing that x is inde-
pendently distributed and comes from a normal or Gaussian
probability distribution with mean µ and variance 1), δ0 has
lowest risk of any linear or nonlinear unbiased estimator, a
characteristic that should surely appeal to all. We will return
to this fascinating topic again later.

Trimmed means

An important issue in stacking is the concept of robustness. It
occasionally happens that our data are infected with a few large
errors and, consequently, the tails of the underlying distribution
are heavier than those of the Gaussian distribution. In such
circumstances, δ0 is much influenced by such errors, and the
estimate is said to be not resistant or nonrobust. Overcoming
such effects requires the concept of order statistics. The most
widely known of such statistics is the median, computed as the
middle value of M + 1 ordered numbers. Clearly, the median is
considerably less sensitive to outliers and for this reason is often
used in robust data processing. A point worth noting is that for
symmetric distributions the median is equal to the mean.

Consider first the concept of a trimmed mean that is iden-
tified by the proportion that is trimmed from each end of the
ordered sample. Thus, the 10% trimmed mean of a sample of 20
points is the mean of the remaining 16 points. Note that the me-
dian is approximately a 50% trimmed mean. Sometimes, a spec-
ified trimming might entail a fraction of an observation. In this
case, a weight is assigned to the remaining partially trimmed
data, and the resulting estimator is called an α-trimmed mean,
which has seen application in seismic data processing.

Let y1≤ y2 · · · ≤ yM be the ordered data points. Define k to
be the integer that is less than or equal toαM where 0≤α≤ 0.5,
and assign r = αM − k. The α-trimmed mean, T(α), is defined
by

T(α) = 1
M(1− 2α)

[
(1− r )(yk+1 + yM−k)+

M−k−1∑
i=k+2

yi

]
.

(4)

For the sake of completeness, we point out that the α-trimmed
mean, just like the median, is an L-estimator, which is a
weighted estimator of order statistics. L-estimators, in partic-
ular L-moments that are robust estimates of the moments of
probability distribution functions, are seeing much press in re-
cent times. An excellent review of some robust data analysis
techniques may be found in Kleiner and Graedel (1980). For
those seeking L-moments punishment, there is Ulrych et al.,
(1999).

Weighted stack

At this point we wish to mention the weighted stack and,
in particular, the version introduced by Schoenberger (1996).
The idea is very appealing. Let us represent a seismic section
consisting of M traces with N points per trace by the N row×M
column matrix D. The application of conventional stacking may
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be written as Dw = ŝ, where w is a vector of M weights, each
equal to 1/M , and ŝ is the stack, a N-element vector that is
an estimate of the signal. Schoenberger suggested determining
w so that, first, ŝ is an unbiased estimate and, second, Nc is
attenuated because the weights are designed to reject those
frequencies at which the coherent energy is present. The former
leads to

∑
wi = 1; the latter to a matrix equation similar in

form to the least squares normal equations.

SOME SPECIAL TRANSFORMATIONS

All of us have our favorite transformations. Here are a few
of ours.

Eigenvector

We deal briefly with two eigenvector decompositions that
have proved to be of particular value.

Eigenimages.—Consider our data D to be, as above, a N×M
matrix comprising M traces and N points per trace. D admits
the Lanczos decomposition

D = UΣVT =
M∑

i=1

σi ui vT
i , (5)

where U and V are the left and right eigenvector matrices, re-
spectively, and Σ is the matrix of singular values. In the summa-
tion representation, the σi are the individual, positive singular
values and, in general, so ordered that σ1 > σ2 > · · · > σm.
Equation (5) represents a projection of D onto an orthonor-
mal basis, specifically a basis composed of weighted rank one
matrices ui vT

i , called eigenimages. Clearly, the contribution of
a particular eigenimage in the reconstruction of D is propor-
tional to the magnitude of the associated singular value. When
the singular values are ordered in decreasing magnitude, it is
possible, depending of course on the data, to reconstruct the
matrix D using only the first few eigenimages. For this reason,
D is preprocessed (by means of NMO) prior to transformation
so that the signal is as horizontal as possible. As a result, the
signal exhibits maximum coherence from trace to trace, and of-
ten the first few eigenimages will contain the separated signal.
Random noise is dispersed equally among all the eigenimages
and, thus, keeping only the first few eigenimages results in the
attenuation of both Nr and Nc (see Freire and Ulrych, 1988,
for details).

This process is very similar to that of stacking in the case
where the noise is Gaussian and the signal is well-aligned. We
believe, however that when this is not the case, eigenimage
decomposition has an advantage since the mapping is based
on the covariance matrix of the data (this also applies to a
comparison of eigenimage with f -k filtering). The relationship
to the covariance structure of the data is important, and a more
detailed look is appropriate.

The covariance (or variance-covariance) matrix is a matrix
which contains all the individual trace variances along the main
diagonal and the covariances between traces in the off-diagonal
elements. An inspection of the matrix CD = DT D will quickly
convince the reader that CD is a weighted estimate of the zero-
lag covariance matrix of the data D. Indeed, the first element of
this matrix is c11 =

∑N
i=1 d2

1i , just the weighted estimate of the
variance of a zero-mean vector. Since it can be easily shown that

the singular valuesσi in equation (5) are just the positive square
roots of the eigenvalues of CD , the fact that the eigenimage
decomposition of D is based on the covariance structure of the
data becomes clear.

The difference between eigenimage decomposition and stac-
king is obvious when we consider AVO processing. In this case,
stacking is forbidden, yet the first eigenimage attenuates noise
as well as preserving the telltale amplitude variations. In fact,
the first eigenimage may be visualized as a stack weighted with
the right eigenvector that is destacked (a term introduced to
us by Guus Berkhout, personal communication, 1997) with
weights determined from the left eigenvector.

Another interesting aspect of the eigenimage decomposition
is that, under certain circumstances, considerable data com-
pression may be realized. This is particularly so when geology
is fairly gentle, in which case common offset processing may
result in better than 95% data compression.

In Figure 2, we illustrate the principle of eigenimage analysis
with a very simple example: a synthetic section with Gaussian
noise that exhibits an amplitude variation with offset (AVO)
signature. Figure 2a is the noisy section with AVO. The first
eigenimage is illustrated in Figure 2b, where the attenuation of
the random noise is evident. The spectrum of singular values is
shown in Figure 2d. The eigenvectors u1 and v1 in this example
have a clear physical meaning. The eigenvector v1 represents
the trace-to-trace amplitude variation or the AVO effect (Fig-
ure 2d), and the eigenvector u1 is a scaled estimate of the source
wavelet (Figure 2e). The latter is true when the waveform is
properly flattened. If this is not the case, more than one eigen-
image will be required to properly model the waveform.

Karhunen-Loéve.—Although the eigenimage decomposi-
tion that we have described is also known in the literature
as the Karhunen-Loéve decomposition, we would like to dif-
ferentiate the two approaches. Eigenimages are based on the
eigenvectors of the zero-lag 2-D data covariance matrix. The
Karhunen-Loéve transform was introduced in order to decor-
relate the expansion coefficients, ai , in the decomposition

x =
N∑

i=1

ai vi , (6)

where vi are the eigenvectors associated with R, the Toeplitz
autocovariance matrix of the process x(t). Since the eigenvec-
tors form an orthonormal basis, the coefficients, ai , are uncor-
related and may be determined from

ai = vT
i x. (7)

As we have seen above, the eigenimage decomposition is
computed from the zero-lag covariance matrix of a multichan-
nel process. The Karhunen-Loéve decomposition, on the other
hand, requires a covariance matrix, R, that contains all required
lags of the autocorrelation of the single channel process, x. It
is clear, in fact, that the eigenvectors that are required in the
two approaches are quite different.

In the example illustrated here, we adapt the Karhunen-
Loéve decomposition to a multichannel input by computing
R as the average matrix for all traces. The filtering is accom-
plished by retaining only a subset of the computed eigenvec-
tors. The results shown in Figure 3 consider the filtering of
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events with an AVO signature. Figures 3a and 3b show the in-
put S and D, respectively. Figures 3c and 3d show the filtered
output and the residual section. It is clear that, in this case,
unlike the case of eigenimage filtering, NMO correction is not

FIG. 2. Eigenimage decomposition: (a) input section with AVO signature, (b) the “clean image” computed by means of the first
eigenimage, (c) distribution of singular values, (d) the first right eigenvector, v1, is an estimate of the scaled AVO effect, (e) the first
left eigenvector, u1, is an estimate of the source wavelet.

FIG. 3. Karhunen-Loéve filtering: (a) input signal, (b) input data, (c) Karhunen-Loéve filtered
section, (d) residual section.

required prior to decomposition. The importance of the issue
of correctly determining the number of eigenvectors required
in the reconstruction (a particularly challenging task) is evident
in Figure 3d, where a trace of the signal remains.
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Radon transform

The signal in D can be approximated, to first order, by hyper-
bolic events. As such, we seek a mapping from x-t to a domain
where a hyperbolic event will map into a point. In principle, the
Radon hyperbolic transform will achieve this end. It turns out
that the hyperbolic form of the Radon transform, compared to
its parabolic cousin, is very much more time-consuming to im-
plement due to the lack of time invariance. Specifically, whereas
the parabolic transform (introduced by Hampson, 1986) is lin-
ear and allows the use of the fast Fourier transform (FFT), the
hyperbolic transform is not, and no decoupling of frequency
components would occur.

Therefore, one prefers to transform via the parabolic form
after a correction to D such that hyperbolas become, more or
less, parabolas. A little arithmetic is now required. We define
the parabolic Radon transform as a linear transformation from
the data space into the parabolic Radon domain for a particular
frequency. In matrix notation we have

m̃ = Ld, (8)

where m̃ and d are vectors that define the model space (the
Radon domain) and the data (a common midpoint or shot
gather), respectively. We can say that L is an operator that
stacks the data along parabolic paths. We have placed a tilde
( ˜) over the m to indicate that the mapping according to equa-
tion (8) yields a low-resolution or smooth model. In the stack-
ing process, reflections with different moveout should collapse
into points in the Radon space, therefore individual events
can be identified and, subsequently, removed. Unfortunately,
it turns out that the operator L does not possess enough resolu-
tion to properly distinguish events with similar moveout. This
is a simple consequence of the frequency bandwidth and the
finite aperture in seismic acquisition.

Instead of using the operator L to map reflections into the
parabolic Radon domain, we prefer to pose the mapping as
an inverse problem where now, d, the data, are viewed as the
result of the transformation (Sacchi and Ulrych, 1995):

d = L′m. (9)

The operator L′ is called the adjoint operator (L and L′ define
an adjoint pair). In other words, L′ is an operator that maps a
point in the parabolic Radon space into a data parabola. The
advantages of using equation (9) over equation (8) are twofold.
First, by posing our problem as an inverse problem, we can
choose a strategy to enhance the resolution of the transforma-
tion (by resolution we mean the ability of the transformation
to recognize events with similar moveout curves). Second, by
selecting the proper regularization scheme, random noise can
be attenuated. A word here about regularization. As we have
pointed out, our inverse problem, when correctly posed, is un-
derdetermined. The matrix L in equation (8) does not have an
inverse. An infinity of solutions exist. Of course, one does not
abandon the problem in despair. As is well known, a solution
may indeed be found, one of the infinite solutions possible, by
regularizing the problem. Essentially this consists of building a
cost function that, upon optimization, will yield the sought af-
ter model parameters. The cost function, J, is in general made
up of two parts and can be written (first, in words; we present

a Bayesian cost function a little later) as

J = λ(model norm)+ (data constraints); (10)

λ is what Bayesians call a hyperparameter. Since we are rather
partial to Bayes, we will maintain this nomenclature here. A
hyperparameter controls the inversion. Its value determines
how well the data constraints are adhered to, at the same time
minimizing the model norm.

As fledgling Bayesians, we pose our inverse problem as one
of inference and build our cost function by allowing prior in-
formation to guide us to a solution that, while honoring the
data, exhibits the characteristics that we require (more on this
later). In order to incorporate our prior constraints, we use
Bayes’ theorem which, simply stated, is

p(m | d) ∝ p(d |m)p(m), (11)

where p(m | d) is the posterior probability of the model given
the data, p(d |m) is the likelihood, and p(m) is the prior prob-
ability of the model. As is common, we take the likelihood
to be Gaussian. It is p(m) that gives the solution that special
flavor. We wish to impose sparseness or limited support, the
characteristic we mentioned above, that will simulate an ex-
tended aperture and allow us to identify and, hopefully atten-
uate, Nc. Choosing a Cauchy distribution for p(m) (see Sacchi
and Ulrych, 1995, for a rationale and details), we maximize
p(m | d). This implies minimizing the cost function J which,
taking the logarithm of p(m | d) and substituting the relevant
Gaussian and Cauchy densities, is given by

J = λ
∑

ln

(
1+ m2

i

σ 2
c

)
+ (L′m−d)T C−1(L′m−d), (12)

where λ and σ 2
c are the hyperparameters we talked about and

C is the data covariance matrix. Equation (12) is nonlinear and
is solved iteratively.

It is clear that other regularization strategies can be chosen.
A popular method to solve an inverse problem is by the in-
troduction of a smoothing operator. In Bayesian terms, this is
equivalent to adopting a Gaussian prior distribution for the
unknown m. Such a distribution is smooth in the sense that
the probability of the model parameters being very different
from each other is rather small. Smoothness also follows from
the fact that the Gaussian distribution is neutral-tailed (unlike
the Cauchy that is heavy-tailed). There is a 99.7% probability
that an observation from this distribution will be within three
standard deviations of the mean. The Gaussian prior leads to
the well known “damped least-squares solution.” In Figure 4,
we examine the importance of choosing the proper prior infor-
mation in the computation of the parabolic Radon transform.
We consider a model that consists of a primary and multiple
event, shown in the τ -q domain in Figure 4a (the primary is
the first event), where q is the parameter associated with the
parabolic equation (much as p is associated with the linear
event in the linear τ -pRadon transform). This model is mapped
into the x-t domain in Figure 4c to simulate two reflections with
parabolic moveout. To make things more complicated, the data
are unevenly sampled and severely aperture-limited, as shown
in Figure 4b. Our task is summarized as follows: given the
data in the x-t domain (Figure 4b), recover the τ -q model and,
from the model, reconstruct the evenly sampled and “infinite”
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aperture data (Figure 4c). In Figure 4d, we show the τ -q model
computed using the least-squares approach; in Figure 4g, we
show the τ -q model retrieved using the Cauchy prior. It is clear
that the Cauchy prior yields a result that is more consistent
with the true model, whereas the least-squares approach fails
to distinguish the positions of the two events. This is clearly a
consequence of using a prior that smoothes our image, quite
contrary to the Cauchy prior that is able to sharpen, or properly
deblur, the image. Advantages of the sparse prior go further.
We can use the inverted models (Figures 4d and 4g) to recon-
struct the offset spaces shown in Figures 4e and 4h. In this case,
as is emphasized by the residual sections in Figures 4f and 4i,
the Cauchy solution has enabled us to better recover missing
near and far offset traces.

The role of the prior model is central. It allows sparseness
to be imposed on the solution in a manner similar to the well-
known maximum entropy estimator (Burg, 1975; Ulrych and
Bishop, 1975). In as much as the truncated input autocorrela-
tion function is extended when the maximum entropy spectrum

FIG. 4. Radon transform and multiple attenuation: (a) “ideal” τ -q map for a primary-multiple pair, (b) the input unevenly sampled
and aperture-limited data, (c) the desired evenly sampled data, (d) the τ -q space computed via inversion using damped least-squares,
(e) the reconstructed desired data, (f) the residual panel, (g) the τ -q space computed via inversion using the Cauchy prior, (h) the
reconstructed desired data, (i) the residual panel.

is Fourier transformed, so the aperture of the input data is ex-
tended by the inversion of the model in the τ -q domain.

Wavelet transform processing

The Fourier transform is an indispensable tool that we use in
all aspects of data processing and analysis. This transformation
uses a harmonic basis that is stationary in time. In effect, this
transformation represents a point in time by the superposition
of an infinite number of harmonics of infinite duration with an
infinite range in scale. To localize events both in time and fre-
quency, Gabor (1946) introduced the short time Fourier trans-
form. Recently (Mallat, 1998), based on a synthesis of ideas
from work in the 1920s and 1930s, a particularly flexible trans-
form, the wavelet transform (WT), has seen much press and
many applications. The WT is to us what binoculars are to bird
watchers. It allows us to localize D both in time and in scale, thus
enabling us to see details that the Fourier transform is unable to
resolve. We apply the WT here in a particularly simple fashion.
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A much more complete view of the many possibilities is seismic
applications has been presented by Foster et al. (1994).

The first step is to choose an appropriate basis. In this case, we
have chosen the D20 wavelet basis of Daubechies (see Mallat,
1998). We write this orthogonal basis as the dilated and trans-
lated family,

ψ j,n(t) = 1√
2 j
ψ

(
t − 2 j n

2 j

)
j, n ∈ Z, (13)

where Z is the set of integers; j is called the scale factor, since
ψ j,n(t) is of length 2 j ; n is called the translation or shift factor
and is scale dependent. The wavelet coefficients, w( j, n), are
computed in the usual manner by projecting the data, d(t), onto
the basis functions:

w( j, n) = 〈ψ j,n(t), d(t)〉 =
∑

t

ψ j,n(t)d(t). (14)

The wavelet coefficients at the three lowest scales are nor-
malized to N(0, 1) by means of a robust estimate of the standard
deviation and a threshold coefficient, ν, is estimated very sim-
ply (Donoho, 1994) as ν = √2 log nj , where nj is the number of
coefficients at scale j . The wavelet coefficients at scale j below
the threshold ν are zeroed, and the filtered data are recovered
by an inverse WT. The results for the same example that was
used in illustrating Karhunen-Loéve filtering are shown in Fig-
ure 5. Figures 5a and 5b are equivalent to Figures 3a and 3b
and are repeated for convenience. Figure 5c is very close to
the result shown in Figure 3c. Differences may be seen in the
residual panels, where the small residual signal remaining in
the Karhunen-Loéve result is not evident in Figure 5d.

We see that this approach does not use the coherence of S as a
criterion. It does, however, impose the criterion of smoothness.
This naturally leads to a hybrid algorithm that extracts S by

FIG. 5. Wavelet transform filtering: (a) input signal, (b) input data, (c) WT filtered section,
(d) residual section.

imposing maximum coherence in x and maximum smoothness
in t . We are exploring such an approach at present.

Stein processing

We began this article with some comments regarding the ba-
sics of stacking. We end on the same note. This section is aimed,
primarily, for cerebral stimulation and for a somewhat more
in-depth discussion concerning risk. It illustrates our scientific
quest: understand the past, implement the present, and explore
the future. This is a bit of the future. Hopefully, applications to
seismic processing will also emerge with time.

There is no doubt that, given a realization of M samples
from N(µ, 1), the only admissible estimator of µ is δ0 defined
in equation (3). The question is, is this also true if more than
one realization is available? An illuminating example, from
the scientific discipline of baseball, that will serve to illustrate
the discussion is given by Efron and Morris (1977). It goes
like this. After the first 45 at bats in the 1970 season, Roberto
Clemente obtained 18 hits; his average at that point in the sea-
son was, therefore, .400. Another great, Thurmon Munson, was
in an early slump and managed only an average of .178. Faced
with the question, what will the respective averages be at the
end of the season, the only admissible answer is .400 and .178.
Clemente and Munson, however, were batting in the majors
with many other batters. James and Stein (1961) (J-S) in the
early 1960s proved a very controversial theorem. An average
estimated by δ0 after 40 at bats, given that there are more than
two other batters in the league, is not an admissible estimator.
In other words, Clemente’s and Munson’s averages are bet-
ter estimated taking into account what other batters are doing,
providing that there are three or more batters. Put in a different
but equivalent manner, for this case δ0 is not the estimator with
lowest risk. Let us pay some attention to this notion of risk.
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Life, as some great sage once said, is an inverse problem. In
particular it is an ill-posed inverse problem. Our task, it seems,
is to try and find solutions which, from the infinity of possibili-
ties, are ones that offer lowest risk when pursued. Statisticians
use two terms when dealing with this subject: risk and effi-
ciency. We have considered the maximum likelihood estimator
for estimating baseball averages at the end of the season. The
properties of δ0 are well known. It is an unbiased (it is not par-
tial to any preferred value) estimator of the population mean
with variance σ 2/M , where σ 2 is the actual variance associ-
ated with the probability distribution function. The question
we pose is whether there is not some other estimator that can
obtain an estimate with lower variance (or with lower risk) than
δ0. Perhaps the median? It turns out that the variance of the
sample median for a Gaussian distribution is πσ 2/2M . Since
the efficiency of the estimator is defined in terms of the size of
sample required to achieve a certain accuracy, the efficiency of
the median compared to the mean is 2/π = 64%. In terms of
risk, the risk of the median compared to that of the mean is the
ratio of the respective variances, i.e., 1.57.

Let us now look at the J-S estimator. Consider, for a givenµi ,

xi |µi
ind∼ N(µi , 1) i = 1, 2, . . . ,≥ 3. (15)

The variance is taken to be unity for convenience through
an appropriate scale transformation. We wish to determine
the unknown vector of means µT = (µ1, µ2, . . . , µk) so as to
minimize the loss, L , defined in the usual way as

L(µ, µ̂) =
k∑

i=1

(µ̂i − µi )2, (16)

where µ̂ is the estimate of µ. We now formally define the risk,
R(·, ·), for the MLE estimator as

R(µ, δ0) = Eµ

[
k∑

i=1

(
δ0(xi )− µi

)2

]
, (17)

where Eµ[ · ] is the expectation (the average) over the dis-
tribution in equation (15). It turns out that R(µ, δ0) = k for
every value of µ. It is constant. This is the lowest risk that
was considered possible prior to James and Stein. In 1961,
James and Stein gave us a new estimator, δ1 (for k ≥ 3)—the
J-S estimator, which is now much in use in finite population
sampling. It is, for each score xi ,

δ1(xi ) = δ0(x)+ κ(xi − δ0(x)
)
, (18)

where κ is called the shrinkage factor and is computed as a
function of the deviation of each score from the grand average
δ0(x). For the normalized distribution of equation (15),

κ = 1− (k− 2)∑
k

(
xi − δ0)2 . (19)

It turns out that in this case, the risk R(µ, δ1) < k for all values
of x.

What is this magical shrinkage factor κ? Efron and Morris
(1977) describe it as follows. Designating

∑
k(xi − δ0)2 = S for

convenience, we see that, as S decreases (in other words, as
the deviation of each score from the grand average decreases),
κ tends to 0 and the individual averages are shrunk towards the
grand average. As the data deviations from the grand average
increase on the other hand, S increases, κ tends to 1, and not

much shrinkage ensues. The shrinkage is, therefore, controlled
by the data themselves and by the initial J-S hypothesis that
the individual averages are not far from the grand average.

Returning now to the baseball example, in order to compare
the risks associated with δ0 and δ1, we need to know the actual
batting potentials. Of course, these are forever unknown, but
we can obtain a pretty good estimate by waiting to the end
of the season. By this means, Efron and Morris (1977) show
that the error in the maximum likelihood estimate is 3.5 times
higher than that of the J-S estimate. Clemente’s average is de-
creased to .294, to be compared with his season’s end average
of .348. Munson’s average, on the other hand, is increased to a
J-S estimate of .247, and compares with .320 at the end of the
season. For 16 of the 18 players considered by Efron and Mor-
ris, the J-S estimated average after 45 at bats is closer to the
“true” average than the conventionally estimated figure. Fasci-
nating. Can we apply the Stein concept to seismic processing?
Perhaps we can replace the batter with the seismic trace and
compute a stack that is of lower risk. In fact, in shrinking xi ,
the J-S estimator takes into account the effect of the variance
associated with each batter and, in that sense, allows the fold
to be incorporated into the calculation.

We are in the process of testing this method of stacking on
seismic data. Specifically, our attempt is to improve the signal-
to-noise ratio in D without stacking for the purpose of, say,
AVO analysis. We use the J-S estimator as a preprocessing
step that allows us to shrink the noise variance in the section.
Each batter becomes a time point associated with a trace. We
thus consider M batters for each of the N points in the NMO-
corrected gather, compute the appropriate shrinkage locally,
and then the new sample value.

Figure 6 illustrates a tentative result. Figure 6a is the sim-
ulated AVO, Figure 6b is Figure 6a with noise, and Figure 6c
shows the result of Stein preprocessing. For comparison pur-
poses, we have processed the same example using eigenimage
decomposition. The result obtained by keeping only the first
two eigenimages is shown in Figure 6d. Although the eigenim-
age result has a somewhat higher signal-to-noise ratio, the J-S
estimator has considerably shrunk the noise variance in very
inexpensive fashion.

Clearly, applying the J-S estimator locally as we have done
has similarities to moving average filtering. Specifically, if κ = 1,
δ1(xi )= δ0(x) and the J-S estimator is precisely the maximum
likelihood average. Clearly, however, there are other ways of
applying δ1. Our aim in introducing the Stein estimator in this
article is to suggest a possible new avenue for research. We do
not mean to imply that such a procedure will be superior to, say,
eigenimage decomposition or WT filtering. We think, however,
that the mathematical justification of the J-S estimator and the
fact that that it may be easily and inexpensively implemented
makes it worthy of attention.

SUMMARY

There is no manner of increasing the information content of
the recorded D. All we can hope to do is to expose S by atten-
uating N. We attempt to do this by mapping D into a domain
where, because of the different characteristics of S, Nc, and Nr

(such as coherence, bandwidth, fractal dimension, scale etc.),
we can separate these quantities into distinct subspaces and
thereby attenuate the undesired components. In all cases, the
forward and inverse mappings, derived on the basis of scientific
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FIG. 6. Stein processing: (a) input signal, (b) input data, (c) stein processed section, (d) eigen-
image processed section.

principles, require some parameters to make them work. Set-
ting these parameters is, in general, an art. It is these details
that, according to Arthur Weglein (personal communication,
1985), seldom see the light of publication.

We have briefly explored various techniques of signal-to-
noise enhancement. Stacking is one such mapping that, how-
ever, is not always desirable, since it may destroy important
signal attributes. Eigenimage and Karhunen-Loéve decompo-
sition, Radon transformation, wavelet thresholding, and Stein
processing can lead to signal and noise separation without, we
hope, signal distortion. In such manner we may, perhaps, ex-
pose S, our David, without, we fervently hope, by so doing
damaging E that gave birth to D in the first place.

REFERENCES

Burg, J. P., 1975, Maximum entropy spectral analysis: Ph.D. thesis, Stan-
ford Univ.

Donoho, D. L., 1994, De-noising by soft-thresholding: manuscript,
Department of Statistics, Stanford Univ. Available at www.stat.
stanford.edu/∼donoho/Reports/index.html.

Efron, B., and Morris, C., 1977, Stein’s paradox in statistics: Scientific
American, May, 119–128.

Foster, D. J., Mosher, C. C., and Hassanzadeh, S., 1994, Wavelet trans-
form methods for geophysical applications: 64th Ann. Internat. Mtg.,
Soc. Expl. Geophys., Expanded Abstracts, 1465–1468.

Freire, S. L., and Ulrych, T. J., 1988, Application of singular value
decomposition to vertical seismic profiling: Geophysics, 53, 778–
785.

Gabor, D., 1946, Theory of communication: J. IEEE, 93, 429–457.
Hampson, D., 1986, Inverse velocity stacking for multiple elimination:

J. Can. Soc. Expl. Geophys., 22, 44–55.
James, W., and Stein, C., 1961, Estimation with quadratic loss: Proc.

4th Berkeley symp. math. stat. and prob., 1, 361–379.
Kleiner, B., and Graedel, T. E., 1980, Exploratory data analysis in the

geophysical sciences: Rev. Geophys. Space Phys., 18, 699–717.
Mallat, S., 1998, A wavelet tour of signal processing: Academic Press.
Sacchi, M. D., and Ulrych, T. J., 1995, High-resolution velocity gathers

and offset space reconstruction: Geophysics, 60, 1169–1177.
Schoenberger, M., 1996, Optimum weighted stack for multiple sup-

pression: Geophysics, 61, 891–901.
Ulrych, T. J., and Bishop, T. N. 1975, Maximum entropy spectral analysis

and autoregressive decomposition: Rev. Geophys. Space Phys., 13,
183–200.

Ulrych, T. J., Velis, D. R., Woodbury, A.D., and Sacchi, M. D., 1999,
L-moments and C-moments: Stoch. Envir. Res. and Risk Assess-
ment, accepted for publication.


