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Interpolation and Extrapolation Using a
High-Resolution Discrete Fourier Transform

Mauricio D. Sacchi, Tadeusz J. Ulrych, and Colin J. Walker

Abstract—We present an iterative nonparametric approach to Marple [4]. Basically, spectral analysis is an underdetermined,
spectral estimation that is particularly suitable for estimation of  |inear inverse problem. The goal is to determine a spectral
line spectra. This approach minimizes a cost function derived ggtimate from the infinite number of estimates that are consis-
from Bayes’ theorem. The method is suitable for line spectra since ith the d h . | af | f
a “long tailed” distribution is used to model the prior distribution tent with the aFat at re_present, In general, a_ ew samples o
of spectral amplitudes. An important aspect of this method is the autocorrelation function. Most of the techniques that have
that since the data themselves are used as constraints, phasébeen proposed depend on the use of some particular norm
information can also be recovered and used to extend the data that imposes a particular feature on the spectral estimate. In
outside the original window. a similar fashion, the computation of the Fourier transform in

The objective function is formulated in terms of hyperpa- . . . . .
rameters that control the degree of fit and spectral resolution. & Manner consistent with a given set of discrete observations

Noise rejection can also be achieved by truncating the number can also be regarded as a linear inverse problem [9].
of iterations. Spectral resolution and extrapolation length are We show that Fourier transform estimation by inversion
controlled by a single parameter. When this parameter is large with prior information is quite similar to a bandlimited signal

compared with the spectral powers, the algorithm leads to zero : : . . .
extrapolation of the data, and the estimated Fourier transform extrapolation problem. Different algorithms that achieve this

yields the periodogram. objective have been devised [1], [10]. The underlying basis
When the data are sampled at a constant rate, the algorithm of these algorithms can be summarized as the minimization

uses one Levinson recursion per iteration. For irregular sampling of a frequency weighted norm subject to data constraints. The

(unevenly sampled and/or gapped data), the algorithm uses one weights are chosen to incorporate soariori knowledge of

Cholesky decomposition per iteration. - .
The performance of the algorithm is illustrated with three the bandwidth and shape of the spectrum of the signal target.

different problems that frequently arise in geophysical data A byproduct of the algorithm is the Fourier transform of the

processing: extended time series and, therefore, a high-resolution spectral
1) harmonic retrieval from a time series contaminated with estimate as well.
noise; The technique is also used to reconstruct a signal from a set

2) linear event detection from a finite aperture array of

receivers [which, in fact, is an extension of 1)], of nonuniform samples. The algorithm computes the discrete

3) interpolation/extrapolation of gapped data. Fourier transform (DFT) from the nonuniform sampled signal,

The performance of the algorithm as a spectral estimator is and f|naIIy: an inverse D_FT is used to tha|q an evenly
tested with the Kay and Marple data set. It is shown that the Sampled signal. An algorithm for recovering signals from
achieved resolution is comparable with parametric methods but nonuniform samples has been proposed by Manedsl. [7],
with more accurate representation of the relative power in the [g8]. This algorithm recovers a bandlimited signal by iteratively
spectral lines. applying bandlimiting and nonuniform sampling operators.

Index Terms—Bayes procedures, discrete Fourier transforms, The bandlimiting operator is used to constrain the signal to
ir\terpc_)lation, inverse pI’OblemS, i'}erative methOdS, Signal restora- have a preass|gned Spectral Support Our techr"que |S qu|te
tion, signal sampling/reconstruction, spectral analysis. different in that we model the signal by assigning a prior

distribution to the spectral samples of the DFT.
|. INTRODUCTION The paper is organized as follows. In Section I, we present

ECTRAL analysis is a very active field of researcrﬁninvers’? procedure to co.mpute the_: DFT. Theinverse problem
gossible applications are extremely diverse and have bé%rqegulanzed using two d|ﬁgreqt criteria. First, we propose a
particularly well detailed in an excellent review by Kay and€ro-order quadratic regularization (damped least-squares) [5]

that is derived from Bayes’ theorem, assuming the DFT and
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In Section Ill, we describe the algorithm that is utilized td3. Bayesian Approach to Regularization—The

retrieve the DFT. In Section IV, we discuss the estimation @aussian—-Gaussian (GG) Model

the hyperparameters that control the resolution of the SpeCtralrhroughout this paper, we will consider data contaminated

estimate. Finally, Section V is devoted to humerical examplqi, noise that is distributed a&(0, 02). The conditional
distribution of the data is given by

1 o 1/202 FX||3
p(x|X, 0,) = <27r02> e~ (1/20)1x—FX||z (6)

[I. THEORETICAL CONSIDERATIONS

A. Estimation of the Fourier Transform by Linear Inversion Consider a prior distribution fop(X|ox) conditional on a

Consider anV-sample time serieso, x1, 2, -++, £x-1. parametersx. According to Bayes’ rule (see, for example,
The DFT of the discrete series is given by [6]), the a posteriori distribution of the vector of parameters
Nl is given by
_ —i2znk/N 0 ... _ Xlo x| X, oy
Xk— Z-’L’ne k—O, ,N 1 (1) p(X|X, O—Xao—n):p( | X)p( | ) (7)
— p(x|X, ox, o)
and similarly, the inverse DFT is given by The maximuma posteriori (MAP) estimatorX maximizes
p(X|x, ox, o) for givenox ando,. Let us assume that the
] V=t prior distribution of X}, is Gaussian and, sincg; is a complex
Ty = — Z X et2mnk/N n=0,.--,N—-1. (2) variable, we will also assume that the real and imaginary parts
k=0 are independent variables with Gaussian distributions. Then
Let us suppose that we wish to estimdte spectral samples PRX), %(X)VJLX]l
yvhereM > N A stapdard approqch to splvmg th!s .problem _ 1 o= (1203 IIREO 3+ (X)12]
is zero padding. Defining a new time series consisting of the 2r o3
original series plus a zero extension for= N, ---, M — 1, 1 M-1
we can estimatel/ spectral samples using the DFT. This = <2 5 )
TOY

procedure helps to remove ambiguities due to discretization of
the Fourier transform, but as is well known, it does not reduce 10\ M= ) )

the sidelobes created by the temporal window. Let us therefore " €xXp _< ) Z [REX5)™ +S(X0)7] - (8)
consider the estimation af/ spectral samples but using (1) k=0

without zero padding. In other words, we want to estimafEhe last equation describes the joint distribution2¢f/ —

the DFT using only the available information. Moreover, ii) random variables that represent the joint distribution of
order to avoid biasing our results by the discretization, w& — 1 complex variables [3]. SincgR(X)[3 + [|S(X)||3 =

2
20%

also impose the conditio > N. Rewriting (2) as XH"X, (8) may be regarded as the joint distribution of the
complex variableX conditional onsx, which we designate
ML " byp(X[qX). The MAP.sqution that maximizes thmosteriori
Tn = 37 > Xie n=0,---,N—-1 (3) probability also minimizes the function
k=0
1 1
Tgg(X) = 5 IIXI3 + 5 [lx — FX]|3
gives rise to a linear system of equations 9 20% 27 202 2
1

1
= XX 4+ = (x-FX)?(x - FX 9
x=FX (4) 20% + 202 (x ) (x ) 9)
where the subscripyg stands for the GG model. Taking

where the vectorsx € R™ and X € C denote the gerivatives and equating to zero gives the following estimator
available information and the unknown DFT, respectively. T*l%ee the Appendix):

N x M matrix F contains the exponential terms, ;, = R . e
(1/M) ¢2=¥/N Equation (4) is a linear underdetermined X=(F"F+Alm) F'x. (10)
problem that, as is well known, can be satisfied by many,. scalan

) . . T " =02 /0% is also known as the tradeoff or ridge
different solutions. Uniqueness is imposed by defining a regiiy essjon parameter. We can write (10) in another form using
larized solution [12]X, which is obtained by minimizing the

> the identity
expression
(FUF + ) F? = F(FFH 4 \Iy)~! (11)

— 2
J(X) = 2(X) +lx - FX||3 (5) wherel,, andIy denotedM x A4 andN x N identity matrices,

_ _ respectively. Recalling th&F* = (1/M)Iy, we end up with
where |.|[3 stands for thel, norm. We will alternatively he Eourier transform estimate for the GG model
indicate thel, norm as||X||3 = X#X = 3, X; X}, where 1
H denotes Hermitian transpose. The regulariz€éK) serves X = <i + )\) Fix. (12)
to impose a particular feature on the solution. M
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The result is nothing more than the DFT of modified by related to the Fourier coefficients’,. Thus, an iterative
a scale factor. When the additive noise is absant; 0, and procedure is needed to compute the estimafothat solves

the solution expressed by (12) becomes (18). Expression (18) can be rewritten using the identity
N-1 H H —1 H H
. ‘ FY(AIy + FQF~) = (A +F“F)QF~. 20
Xk — Z xne—ﬁﬂ'nk/(l\l—l) (13) ( N Q ) ( Q )Q ( )
n=0 The forms(AQ~! + \FZF) and(\Iy +FQF") are positive

which is the DFT of the windowed time series (1) andefinite leading to the identities

llsfq]li;vial'c?ntj\/t[o_p?ddmg the data with zeros in the range ()\Q_l +FHF)_1FH _ QFH()\IN_FFQFH)—l' (21)
It is clear that the GG model yields the DFT. Hence, thgsing the identity expressed by (21), we can write (18) as

associated periodogram

Lo X = QFY(\Iy + FQF7)~'x. (22)

SinceQ depends orX, the last equation has to be solved by

will exhibit a resolution that is proportional to the length ofheans of an iterative procedure. This is outlined in Section Il1.
the time series. The following observations can be made.

1) Equation (18) demands the inversion aVax N matrix,
whereas in (22), we perform the inversion ofVax M
In problems that involve the estimation of line spectra, we  matrix.
have found that a sparse distribution of spectral amplitudes2) The operator(AIy + FQF) in (22) is Hermitian
provides not only a manner to regularize the inversion of the  Toeplitz, provided that the time series is discretized at
DFT but also enhances the spectral resolution of the associated a constant rate. Therefore, a fast solver like Levinson’s
periodogram. We propose the following distribution to model recursion can be used in the inversion. In the case of

C. Regularization by the Cauchy—Gaussian (CG) Model

the samples of the DFT: nonuniform discretization, a Cholesky decomposition is
1 appropriate.

p(Xklox) o 7OX XA\ (15) As we mentioned, the CG model leads to an algorithm

<1+ 203(’“) that resembles the minimum norm solution of (16). This

is particularly true whenox is large compared with the
which is a Cauchy distribution of the complex variabl¥s  spectral amplitudes we are seeking. In this case, the functional
[3]. The multidimensional distribution is given gy X|ox) = S(X) ~ K + X¥X/20%, where K is a constant. Thus,
[ p(Xx|ox), and we have used this distribution as a priaminimizing J.,(X) is equivalent to minimizing/,,(X). In

for the complex vectoiX. Combining the Cauchy prior with the contrary case, the algorithm will seek a DFT with a sparse
the data likelihood, we find the cost function for the CG modefistribution of spectral amplitudes, reducing windowing effects

1 = and enhancing the spectral peaks.
Jeg(X) = S(X) + 557 (x-FX)" (x — FX) (16)
! Il. | TERATIVE NONLINEAR ESTIMATION OF THE CG MODEL
where S(X) is the regularizer imposed by the Cauchy distri-

bution We now describe the procedure that enables us to minimize
M1 the cost functionJ.,(X). We iteratively solve (22), which
X X3 i i ' i
S(X) = Z o <1 |k . k) (17) qulves the solution of av x NV sys_tem of equations. It is
P 20% straightforward to see the computational advantages of using

(22) rather than (18). First, we will rewrite (22) as
and is a measure of the sparseness of the vector of powers

P, = X3 X}, k=0,---, M — 1. The constantx controls X = QFY(ALy + FQF”)'x = QF"b (23)
the amount of sparseness that can be attained by the inversion, . N .

which will also depend on the noise level singemay inhibit  Where the auxiliary vectob € R™ is obtained from the
a reliable sparse solution. This issue will be examined in detgfflution of the system

in the section devoted to the estimation of hyperparameters. (\Ly + FQFH)b —x. (24)

Taking derivatives of/,;(X) and equating to zero yields
_ _ Equations (23) and (24) suggest an iterative scheme. The
— 1 H 1nH
X=(AQ T +F'F)"F'x (18) algorithm starts with the DFT of the finite length data set
where\ = 02 /0%, andQ is aM x M diagonal matrix with X, The initial solution is also used to generate the matrix
clements Q. In each iteration, we compute

XiX] i=0,---,M-1. (19) b~ = ALy + FQUVF] " 'x (25)

i =1 )
@ + 203(

) which we subsequently use to update the DFT as
Equation (18) resembles the damped least squares solution,

but the elements of the diagonal mati@ are nonlinearly X = QUu-DEpHpk-1) (26)
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where ;, denotes iteration number. The procedure is stopped
when the following criterion is satisfied:

I8 = 3847
187 + 1284721 /2

< tolerance (27)

The estimatorX is computed at the point where the last
condition is satisfied. In general, a few iterations1() are

needed to minimize the cost functiof,,. r

RELATIVE PSD (dB)

V. ESTIMATION OF THE HYPERPARAMETERS _a0

A. Data in the Absence of Noise

For the purpose of this discussion, we will concentrate 40 L o oo b

on the CG model. In the case of accurate data, we set the FREQUENCY (HZ)
parameterr,, = 0. This is equivalent to seeking a perfect fit_

between the observed and the predicted data within the origiﬁﬁ[p
window. Equations (23) and (24) reduce to the formulation we,, = 0.2). The sidelobes inhibit the correct identification of the harmonics.

1. Periodogram of a synthetic process that consists of a pair of unit
litude harmonics of 0.2 and 0.21 Hz immersed in additive white noise

would have obtained by minimizing
Jog(X) = S(X) + b (x — FX) (28)

where b is the vector of Lagrange multipliers. Minimizing
(28) leads to (22) withy2 = 0. In this case, several models _
will satisfy the data. The resolution of the model is controlled@ 10 L
by ox, which is a parameter that invokes sparseness in thg
spectral estimate and therefore enhances resolution. The length
of the extended time series is also controlledday.

When ox > P, where P is the maximum power en-
countered in the initial model, the algorithm leads to the
periodogram. An explanation of this feature is that wheanis -30 |-
large compared with the spectral powers of the periodogram,
the functionalS(X) reduces toy_ X; X} /20%, and we are,
therefore, estimating the minimum norm DFT of the windowed ~ ~40 ——— Lo bumme s b
time series. Thus, the periodogram will coincide with the FREQUENCY (HZ)
periodogram of the windowed time series. Wheg is small , ,
compared with the spectral powers, the algorithm will enhanf, . oyer Seectu, commuted it e Ceuchy Gauss mader e nne
the spectral peaks. sidelobes are suppressed, and the resolution is enhanced.

RELATIVE

B. Estimation ooy Wheno, Is Known of 0.2 and 0.21 Hz contaminated with Gaussian noise with

For harmonic signals with additive Gaussian noise of &andard deviatiomr = 0.1. The frequency spacing is 50%
given poweroy,, the parametery can be easily estimatedpelow the classic resolution limit given by the inverse of
according to a chi-squared criterion. In many geophysic@{e time series length. The periodogram of the time series is
applications, we can assess the noise level. For expensifgwn in Fig. 1. The length of the time series is not sufficient
computational procedures, i.e., 2-D problems, the degreegf esolve both harmonics. The periodogram is dominated
fitting can also be controlled by limiting the number of,; sigelobes that mask the signals. In Fig. 2, we show the
lterations. o power spectrum using the CG model after nine iterations. The

Since we have assumed t2hat the noise 1s normally diSsrameter,, was assumed to be known, amg was obtained
tributed, the misfitd = (1/0;)||x — FX||; reduces 0 a qing the chi-squared criterion. Fig. 3 portrays the power
chi-squared statistic. Therefor&[®] = N [11], vyht_are the spectrum versus the iteration number. The initial spectrum,
largest acceptable value at a 99% confidence limiti§ + with ;1 = 0, corresponds to the periodogram of the finite

3.3VN. length time series. In each iteration, sidelobes are progressively
diminished, and the spectral peaks are enhanced until the
harmonics are precisely recovered. The extended time series
at each iteration are shown in Fig. 4. The first time series
corresponds to the original data, and it is easy to see that the

The simulated example we illustrate consists of a 50-poirgsolution is enhanced as a consequence of the extension we
time series composed of a pair of unit amplitude harmoniobtain.

V. NUMERICAL SIMULATIONS

A. Harmonic Retrieval
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Fig. 5. Periodogram of the Kay and Marple [4] data set.
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Fig. 3. Power spectra versus iteration number. The itergtica 0 corre-
sponds to the periodogram of the finite length time series, which is also plotted

in Fig. 1. The final spectruny(= 9) is also plotted in Fig. 2. w0k
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Fig. 6. High-resolution spectral estimate of the Kay and Marple [4] data set
w computed with the Cauchy—-Gauss model.

in the upper band centered at about 0.35 Hz, where it rises
to about 15 dB below the pair of unit amplitude signals.

Fig. 5 illustrates the usual periodogram of the data, and Fig. 6
m u=0 illustrates the PSD estimated with our algorithm using 2048

P ST S SN N S W S PRI B S T fr n mples. Th ram i
200 100 a 100 equency samples € paral eter was set to zero since

A h

we are fitting the data exactly.

TIME (S) It is easy to see that the method enables us to perfectly
Fig. 4. Time series reconstructed from the DFT versus number of iteratiof€SOIvVe the harmonic components, but the broad part of the
The first time serles;(—o) corresponds to the original data. The associategpectrum is incorrectly replaced by a number of distinct

spectra are shown in Fig. 3. spectral lines (which do, however, outline the shape of the
continuous noise spectrum). This problem is also encountered
B. The Kay and Marple (KM) Example [4] in the high-resolution parametric spectral estimators discussed

by Kay and Marple [4]. This is not to say that our approach
We illustrate the performance of our algorithm by applica ydoo)r/'ned to fa|lloure[ t]he phenomenon bimg simply r;pconse-

tion to the well known KM data set. The results of 11 spectraﬁuence of using a norm that mimics a sparse distribution of
estimators that have been applied to this data set by Kay aﬂféctral amplitudes.

Marple are shown in [4, Fig. 16]. These data constitute anpof the estimators tested in [4], the Hildebrand—Prony
important benchmark in testing the performance of differeftethod, which is a variant of Prony’s approach for real
spectral estimators. The data consist of 64 samples that dﬁdamped sinusoids in noise [2], provides the most accurate
scribe a pair of unit amplitude harmonics with frequenciegpresentation of the frequencies and power of the three
of 0.2 and 0.21 Hz, a third harmonic with an amplitude dfiarmonics. Like our approach, Prony’s method does not
0.1 (20 dB down) at 0.1 Hz, and a continuous noise proce®sjuire autocorrelation estimates. It does, however, require
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the selection of the correct order of the input process, which 0
can be half the data length, and may result in poor estimates if
the order is estimated incorrectly. For the harmonic part of thez,
process, our approach yields a resolution accuracy comparablg
with Prony’s approach. 1§, is increased, the broad part of the %
spectrum can be partly rejected. Unfortunately, this can lead® ;,
to misleading results since small amplitudes might be rejected®

0.1

0.3
C. Spatio-Temporal Spectrum of Signals

Received by a Passive Array

Normaliz

We now apply the algorithm to estimate the spatio-temporal ~ %#

spectrum of a signal received by a passive array of receivers.

This problem frequently arises in radar, sonar, and seismic 4

processing. The goal is to estimate the direction of arrival and ~ -%5 -04 -03 -62 -01 0 01 02 03 04 05

the temporal spectral signature of a set of sources impinging Normalized wavenumber

from different angles on a uniform array &f receivers. In Fig. 7. Conventionaf— plane of three narrowband waves recorded by an

seismology, the problem has been intensively studied to detgré?])’c/ﬂgf ten receivers. The panel is dominated by sidelobes that mask the

plane-wave signals and estimate the slowness vector. In this

paper, we present a narrowband example, but the problem can o

be easily extended to broadband signals. We are also assuming ey

that the array of receivers is linear, but the method can be, P

easily generalized to any real distribution of receivers. 2 0.1
Instead of developing a two-dimensional (2-D) version of 5

our method, we prefer to present a hybrid procedure based oif

standard Fourier analysis in the temporal variable, whereas fo%

the spatial variable, we invert the wavenumber using the CGH

regularization. Usually, the length of the temporal window g 0.3

is sufficient to achieve high resolution with simple methods 5

based on standard Fourier analysis, whereas it is the aperture 0

the array that limits the spatial resolution. The 2-D algorithm 0.4

works as follows.

0.2

1) Each record is transformed to the frequency offset do- . N A N RS N N RV
main USing the FFT. "20.5 -0.4 -0.3 -0.2 0.1 O 0.1 02 03 04 05
2) High-resolution analysis is performed at each frequency Noermalized wavenumber

that comprises the signal. Fig. 8. High-resolutiory—k panel estimated with the Cauchy—Gauss model.
3) The amplitude in thg‘—k space is plotted to identify the Sidelobes are diminished, and consequently, we can clearly recognize the
. spectral signature of each wave.
spatio-temporal structure of each source.
4) Alternatively, the data outside the original aperture may
be extrapolated to simulate a longer array, and any 2f9g. 8. There is a clear enhancement of the spatial resolution.

spectral technique may be used in conjunction with tHe order to obtain such a resolution with a standgrek
extended data set. analysis, the required aperture must be at least 10 times larger

The method was tested with a simulated array of 10 equalf}@n the actual aperture.
spaced receivers. We modeled three sinusoids with unit am-
plitude and with normalized wavenumbers of 0.20, 0.25, afdl Application to Unevenly Sampled Data and to Gap Filling

—0.25 units and normalized frequencies of 0.20, 0.20, and 0.35ry4 important problems in time series analysis are spectral
units, respectively. The temporal extension of each channekigimation of unevenly sampled data and gap filling. We show
100 samples. Gaussian noise with standard deviatipn= i this section that our algorithm may be used to cope with
0.2 was added to the composite record, and each chanpgih problems. For irregular data, the vector of observation
was tapered with a Hamming window. The spatio-temporg| (4) contains the amplitude of the time series at position

spectrum computedl using the periodogram ?s iIIustrat.ed 35]7 j=0,---, N -1, and the Fourier kernel is written as
Fig. 7. The contour lines correspond to normalized amplitudes
ranging from 0 to—40 db with an interval of 5 db. Th¢—& Fj g = 2 tide, k=0,---, M—1. (29)

plane is dominated by sidelobes due to truncation in space

and time. This is more evident for the wavenumber since tli&e frequency axis is discretized at constant rate as in the
aperture of the array is one order smaller that the length of theevious analysis. Notice that the matlBQF* in (22) pos-
time series. The data set was then processed with the hyls@sses Hermitian symmetry but is not Toeplitz. The resampling
procedure based on the CG model. The result is portrayedaind/or gap filling is accomplished by the following scheme.
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1 |- Fig. 10. Power spectrum of the gapped time series computed using the
ol Cauchy-Gauss model.
—1
-2 . Lo
) seeks a sparse solution to the ubiquitous problem of spectral

estimation from a finite set of data. What makes the algorithm

0 MMJWWWMWWNWWVM very attractive is that the sparseness measure is minimized sub-

~1 |- ject to data constraints, and therefore, phase information is also
s N T T recovered and is used in the extrapolation of the signal outside
0 100 200 300 400 the original window, or aperture, depending on the problem.

TIME (Samples) The present algorithm is best suited to the analysis of

Fig. 9. (Top) Synthetic time series; the series contains two unit amplitutdndamped harmonic signals. It is a spectral line estimate;

harmonics Of( ff:egglencies 0.795 3091 0.954 Hz, rG_SPe?]tiveCly; (shecogd) Gapgledrefore, just as in the case of the Hildebrand—Prony estima-

time series; (third) Reconstructed time series using the Cauchy—-Gauss DET; .

(bottom) Error sequence obtained subtracting (third) from (top). For,. the broadband process is less weII. modeled. However_, we
believe that the present approach obtains a result that achieves

a good compromise between an accurate determination of the

1) Select the proper Nyquist frequency, .and define trP’n%\rmonic components and a measure of the power present
number of samples of the frequency axis.

2 E d andF. allocati v the ti di in the stochastic component. Like the Hildebrand—Prony es-
) tormt "’Im b & (?[_calng only the times correspon Ingcimator, our algorithm does not require autocorrelation lag

O actual observations. _ estimates but, unlike the Hildebrand—Prony approach, our
3) lteratively retrieve the DFT using the Cauchy—-Gau

7 ) : ethod also does not require tlaepriori determination of
regularization. At this stage, an estimate of the SPECUr U, order of the process
may also be computed. '

4) Apply the i DET t » tion t te ati The hybrid technique developed to retrieve the spatio-
) pply the |n\|/e(;set lrar_lstormf:l lon d7 C?m]?lll"ti a Imf‘emporal signature of spatial signals offers an efficient alterna-
series sampled at regularintervais andjor to it the 9aRg,e 1o overcome aperture artifacts in short arrays. When the

The top of Fig. 9 portrays a time series that consists of 4Qfta are sampled at a constant rate, the algorithm is very fast
samples. There are two harmonics of unit amplitude, which ag,ce evinson’s recursion is applied.

located at 0.795 and 0.954 Hz. The time series is contaminategtina|ly, we point out that the CG DFT can also be applied

with Gaussian noise withr,, = 0.2. Three segments areéyy retrieve harmonics from irregularly sampled time series.
extracted from the time series to produce the gapped data (ﬁeByproduct of the technique is a time series resampled at
the second level of Fig. 9). The first segment has 20 samplggpstant rate that is obtained from the DFT.

and the second and the third have 40 samples each. We recall
that the gaps in the figure are not treated as zeros. They are APPENDIX
simply not considered in the inversion. We use the CG DFT PROOF OF (10) AND (18)

to estimate the power spectrum of the gapped data, which is ) - )

shown in Fig. 10. The DFT is also used to reconstruct the Using the rules for differentiation of a quadratic form by a
time series. The gaps represent 75% of the total length of #Rmplex vector, we have

reconstructed time series. The hyperparameters of the problem g Jye(X) 8 1 ) 1 )

are chosen to _yield<2 = N. .The fchird level of Fig. 9 shc_)ws X+  gX+ 202 X1 + EHX — FX]3

the reconstruction after ten iterations of our algorithm. Finally, 1 1

the bottom of Fig. 9 shows the difference between the original X - — F(x - FX) (A1)

= —2 B
synthetic time series and the reconstruction using the CG DFT. 20% 200

This is also an estimate of the noise sequence used in ¥gich, after equating to zero, leads to
synthetic time series.

AX + FHFX = Fiix (A2)
VI. DiscussiON AND CONCLUDING REMARKS where \ = 02 /0% . Finally, the solution is given by
The high-resolution technique for the estimation of the X = (FHF+)\IA4)—1FHX (A3)

power spectrum presented in this paper and the prediction of
the time series is based on the application of an algorithm thvehich is (10).
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When the Cauchy prior is adopted, we equate the derivativgs] M. Nafie and F. Marvasti, “implementation of recovery of speech with

of the cost function (16) to zero missing samples on a DSP chilectron. Lett.,vol. 30, no. 1, Jan.
1994.
a.J (X) 9 1 [9] D. W. Oldenburg, “Calculation of Fourier transforms by the
R A A SX)+ == |Ix - FXH% Backus-Gilbert method,Geophys. J. R. Astron. Soegl. 44, 1976.
ax* ax* 20,% [10] A. Papoulis and C. Chamzas, “Detection of hidden periodicities by

adaptive extrapolationJEEE Trans. Acoust., Speech, Signal Processing,

= M 1 FH(x - FX). (A4) vol. ASSP-27, Oct. 1979.
OX* 20% [11] C.R. Raolinear Statistical Inference and Its ApplicationsNew York:
Wiley, 1973.

To evaluate the derivative of the regularization teﬂ@() [12] A. H. Tikhonov and A. V. Goncharskylll-Posed Problems in the
. .. . . . ’ Natural Sciences. Moscow, Russia: MIR, 1987.

for simplicity, we compute the derivative with respect to the

elements of the vectoK*

M

8S(X) . J 1 1 XkX; Mauricio D. Sacchi was born in Colonel Brand-
oXr ~ 9X* Z n{l 202 sen, Argentina, in 1965. He received the diploma
J J k=1 X in geophysics from the National University of La
1 X X7 -1 Plata, La Plata, Argentina, and the Ph.D. degree in
== <1 + 5 k ) X5 geophysics from The University of British Columbia
20% 20% (UBC), Vancouver, B.C., Canada, in 1988 and 1996,
1 respectively.
= Qkflka, (A5) After completing the Ph.D. degree, he joined
20X ’ h the Consortium for the Development of Specialized
! ) Seismic Techniques, UBC, as a Post-Doctoral Fel-
Writing (A5) in matrix form, we have low. He recently joined the Department of Physics,
University of Alberta, Edmonton, Alta., Canada, as an Assistant Professor of
8S(X) 1 -1 Geophysics. His current interests are in the area of seismic data processing
W = W QX (A6) and seismic imaging and inversion.
X

Combining (A4) and (A6), we obtain, after equating (A4) to

Zero Tadeusz J. Ulrych was born in Warsaw, Poland.

He received the B.Sc. (Hons.) degree in electrical
engineering from London University, London, Ont.,
Canada, in 1957 and the M.Sc. and Ph.D. degrees
from the University of British Columbia (UBC),
Vancouver, B.C., Canada, in geophysics in 1961 and
1963, respectively.

He joined the faculty at UBC in 1965, where he

X=(0\Q '+ FIF)"1F x (A7)

which is equivalent to (18) and solved iteratively, as discuss
in Section IIl.
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