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Interpolation and Extrapolation Using a
High-Resolution Discrete Fourier Transform

Mauricio D. Sacchi, Tadeusz J. Ulrych, and Colin J. Walker

Abstract—We present an iterative nonparametric approach to
spectral estimation that is particularly suitable for estimation of
line spectra. This approach minimizes a cost function derived
from Bayes’ theorem. The method is suitable for line spectra since
a “long tailed” distribution is used to model the prior distribution
of spectral amplitudes. An important aspect of this method is
that since the data themselves are used as constraints, phase
information can also be recovered and used to extend the data
outside the original window.

The objective function is formulated in terms of hyperpa-
rameters that control the degree of fit and spectral resolution.
Noise rejection can also be achieved by truncating the number
of iterations. Spectral resolution and extrapolation length are
controlled by a single parameter. When this parameter is large
compared with the spectral powers, the algorithm leads to zero
extrapolation of the data, and the estimated Fourier transform
yields the periodogram.

When the data are sampled at a constant rate, the algorithm
uses one Levinson recursion per iteration. For irregular sampling
(unevenly sampled and/or gapped data), the algorithm uses one
Cholesky decomposition per iteration.

The performance of the algorithm is illustrated with three
different problems that frequently arise in geophysical data
processing:

1) harmonic retrieval from a time series contaminated with
noise;

2) linear event detection from a finite aperture array of
receivers [which, in fact, is an extension of 1)],

3) interpolation/extrapolation of gapped data.
The performance of the algorithm as a spectral estimator is

tested with the Kay and Marple data set. It is shown that the
achieved resolution is comparable with parametric methods but
with more accurate representation of the relative power in the
spectral lines.

Index Terms—Bayes procedures, discrete Fourier transforms,
interpolation, inverse problems, iterative methods, signal restora-
tion, signal sampling/reconstruction, spectral analysis.

I. INTRODUCTION

SPECTRAL analysis is a very active field of research.
Possible applications are extremely diverse and have been

particularly well detailed in an excellent review by Kay and
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Marple [4]. Basically, spectral analysis is an underdetermined,
linear inverse problem. The goal is to determine a spectral
estimate from the infinite number of estimates that are consis-
tent with the data that represent, in general, a few samples of
the autocorrelation function. Most of the techniques that have
been proposed depend on the use of some particular norm
that imposes a particular feature on the spectral estimate. In
a similar fashion, the computation of the Fourier transform in
a manner consistent with a given set of discrete observations
can also be regarded as a linear inverse problem [9].

We show that Fourier transform estimation by inversion
with prior information is quite similar to a bandlimited signal
extrapolation problem. Different algorithms that achieve this
objective have been devised [1], [10]. The underlying basis
of these algorithms can be summarized as the minimization
of a frequency weighted norm subject to data constraints. The
weights are chosen to incorporate somea priori knowledge of
the bandwidth and shape of the spectrum of the signal target.
A byproduct of the algorithm is the Fourier transform of the
extended time series and, therefore, a high-resolution spectral
estimate as well.

The technique is also used to reconstruct a signal from a set
of nonuniform samples. The algorithm computes the discrete
Fourier transform (DFT) from the nonuniform sampled signal,
and finally, an inverse DFT is used to obtain an evenly
sampled signal. An algorithm for recovering signals from
nonuniform samples has been proposed by Marvastiet al. [7],
[8]. This algorithm recovers a bandlimited signal by iteratively
applying bandlimiting and nonuniform sampling operators.
The bandlimiting operator is used to constrain the signal to
have a preassigned spectral support. Our technique is quite
different in that we model the signal by assigning a prior
distribution to the spectral samples of the DFT.

The paper is organized as follows. In Section II, we present
an inverse procedure to compute the DFT. The inverse problem
is regularized using two different criteria. First, we propose a
zero-order quadratic regularization (damped least-squares) [5]
that is derived from Bayes’ theorem, assuming the DFT and
the observational errors can be modeled with a Gaussian dis-
tribution. This regularization leads to the well-known formulas
for the DFT and its inverse, which is equivalent to assuming
that the original times series has been padded with zeros.
Oldenburg [9] reached the same conclusion by minimizing the
first Dirichlet criterion of the Backus and Gilbert formalism.
In our second approach, we use the Cauchy distribution to
model the samples of the DFT. This regularization leads to
an iterative nonparametric procedure to estimate the DFT.
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In Section III, we describe the algorithm that is utilized to
retrieve the DFT. In Section IV, we discuss the estimation of
the hyperparameters that control the resolution of the spectral
estimate. Finally, Section V is devoted to numerical examples.

II. THEORETICAL CONSIDERATIONS

A. Estimation of the Fourier Transform by Linear Inversion

Consider an -sample time series .
The DFT of the discrete series is given by

(1)

and similarly, the inverse DFT is given by

(2)

Let us suppose that we wish to estimate spectral samples
where . A standard approach to solving this problem
is zero padding. Defining a new time series consisting of the
original series plus a zero extension for ,
we can estimate spectral samples using the DFT. This
procedure helps to remove ambiguities due to discretization of
the Fourier transform, but as is well known, it does not reduce
the sidelobes created by the temporal window. Let us therefore
consider the estimation of spectral samples but using (1)
without zero padding. In other words, we want to estimate
the DFT using only the available information. Moreover, in
order to avoid biasing our results by the discretization, we
also impose the condition . Rewriting (2) as

(3)

gives rise to a linear system of equations

(4)

where the vectors and denote the
available information and the unknown DFT, respectively. The

matrix contains the exponential terms
. Equation (4) is a linear underdetermined

problem that, as is well known, can be satisfied by many
different solutions. Uniqueness is imposed by defining a regu-
larized solution [12] , which is obtained by minimizing the
expression

(5)

where stands for the norm. We will alternatively
indicate the norm as , where

denotes Hermitian transpose. The regularizer serves
to impose a particular feature on the solution.

B. Bayesian Approach to Regularization—The
Gaussian–Gaussian (GG) Model

Throughout this paper, we will consider data contaminated
by noise that is distributed as . The conditional
distribution of the data is given by

(6)

Consider a prior distribution for conditional on a
parameter . According to Bayes’ rule (see, for example,
[6]), the a posteriori distribution of the vector of parameters
is given by

(7)

The maximuma posteriori (MAP) estimator maximizes
for given and . Let us assume that the

prior distribution of is Gaussian and, since is a complex
variable, we will also assume that the real and imaginary parts
are independent variables with Gaussian distributions. Then

(8)

The last equation describes the joint distribution of
random variables that represent the joint distribution of

complex variables [3]. Since
, (8) may be regarded as the joint distribution of the

complex variable conditional on , which we designate
by . The MAP solution that maximizes theposteriori
probability also minimizes the function

(9)

where the subscript stands for the GG model. Taking
derivatives and equating to zero gives the following estimator
(see the Appendix):

(10)

The scalar is also known as the tradeoff or ridge
regression parameter. We can write (10) in another form using
the identity

(11)

where and denote and identity matrices,
respectively. Recalling that , we end up with
the Fourier transform estimate for the GG model

(12)
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The result is nothing more than the DFT of modified by
a scale factor. When the additive noise is absent, , and
the solution expressed by (12) becomes

(13)

which is the DFT of the windowed time series (1) and
is equivalent to padding the data with zeros in the range

.
It is clear that the GG model yields the DFT. Hence, the

associated periodogram

(14)

will exhibit a resolution that is proportional to the length of
the time series.

C. Regularization by the Cauchy–Gaussian (CG) Model

In problems that involve the estimation of line spectra, we
have found that a sparse distribution of spectral amplitudes
provides not only a manner to regularize the inversion of the
DFT but also enhances the spectral resolution of the associated
periodogram. We propose the following distribution to model
the samples of the DFT:

(15)

which is a Cauchy distribution of the complex variables
[3]. The multidimensional distribution is given by

, and we have used this distribution as a prior
for the complex vector . Combining the Cauchy prior with
the data likelihood, we find the cost function for the CG model

(16)

where is the regularizer imposed by the Cauchy distri-
bution

(17)

and is a measure of the sparseness of the vector of powers
. The constant controls

the amount of sparseness that can be attained by the inversion,
which will also depend on the noise level sincemay inhibit
a reliable sparse solution. This issue will be examined in detail
in the section devoted to the estimation of hyperparameters.

Taking derivatives of and equating to zero yields

(18)

where , and is a diagonal matrix with
elements

(19)

Equation (18) resembles the damped least squares solution,
but the elements of the diagonal matrix are nonlinearly

related to the Fourier coefficients . Thus, an iterative
procedure is needed to compute the estimatorthat solves
(18). Expression (18) can be rewritten using the identity

(20)

The forms and are positive
definite leading to the identities

(21)

Using the identity expressed by (21), we can write (18) as

(22)

Since depends on , the last equation has to be solved by
means of an iterative procedure. This is outlined in Section III.

The following observations can be made.

1) Equation (18) demands the inversion of a matrix,
whereas in (22), we perform the inversion of a
matrix.

2) The operator in (22) is Hermitian
Toeplitz, provided that the time series is discretized at
a constant rate. Therefore, a fast solver like Levinson’s
recursion can be used in the inversion. In the case of
nonuniform discretization, a Cholesky decomposition is
appropriate.

As we mentioned, the CG model leads to an algorithm
that resembles the minimum norm solution of (16). This
is particularly true when is large compared with the
spectral amplitudes we are seeking. In this case, the functional

, where is a constant. Thus,
minimizing is equivalent to minimizing . In
the contrary case, the algorithm will seek a DFT with a sparse
distribution of spectral amplitudes, reducing windowing effects
and enhancing the spectral peaks.

III. I TERATIVE NONLINEAR ESTIMATION OF THE CG MODEL

We now describe the procedure that enables us to minimize
the cost function . We iteratively solve (22), which
involves the solution of a system of equations. It is
straightforward to see the computational advantages of using
(22) rather than (18). First, we will rewrite (22) as

(23)

where the auxiliary vector is obtained from the
solution of the system

(24)

Equations (23) and (24) suggest an iterative scheme. The
algorithm starts with the DFT of the finite length data set

. The initial solution is also used to generate the matrix

. In each iteration, we compute

(25)

which we subsequently use to update the DFT as

(26)
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where denotes iteration number. The procedure is stopped
when the following criterion is satisfied:

tolerance (27)

The estimator is computed at the point where the last
condition is satisfied. In general, a few iterations ( ) are
needed to minimize the cost function .

IV. ESTIMATION OF THE HYPERPARAMETERS

A. Data in the Absence of Noise

For the purpose of this discussion, we will concentrate
on the CG model. In the case of accurate data, we set the
parameter . This is equivalent to seeking a perfect fit
between the observed and the predicted data within the original
window. Equations (23) and (24) reduce to the formulation we
would have obtained by minimizing

(28)

where is the vector of Lagrange multipliers. Minimizing
(28) leads to (22) with . In this case, several models
will satisfy the data. The resolution of the model is controlled
by , which is a parameter that invokes sparseness in the
spectral estimate and therefore enhances resolution. The length
of the extended time series is also controlled by.

When , where is the maximum power en-
countered in the initial model, the algorithm leads to the
periodogram. An explanation of this feature is that whenis
large compared with the spectral powers of the periodogram,
the functional reduces to , and we are,
therefore, estimating the minimum norm DFT of the windowed
time series. Thus, the periodogram will coincide with the
periodogram of the windowed time series. When is small
compared with the spectral powers, the algorithm will enhance
the spectral peaks.

B. Estimation of When Is Known

For harmonic signals with additive Gaussian noise of a
given power , the parameter can be easily estimated
according to a chi-squared criterion. In many geophysical
applications, we can assess the noise level. For expensive
computational procedures, i.e., 2-D problems, the degree of
fitting can also be controlled by limiting the number of
iterations.

Since we have assumed that the noise is normally dis-
tributed, the misfit reduces to a
chi-squared statistic. Therefore, [11], where the
largest acceptable value at a 99% confidence limit is

.

V. NUMERICAL SIMULATIONS

A. Harmonic Retrieval

The simulated example we illustrate consists of a 50-point
time series composed of a pair of unit amplitude harmonics

Fig. 1. Periodogram of a synthetic process that consists of a pair of unit
amplitude harmonics of 0.2 and 0.21 Hz immersed in additive white noise
(�n = 0:2). The sidelobes inhibit the correct identification of the harmonics.

Fig. 2. Power spectrum computed with the Cauchy–Gauss model after nine
iterations. The data correspond to the harmonic process used in Fig. 1. The
sidelobes are suppressed, and the resolution is enhanced.

of 0.2 and 0.21 Hz contaminated with Gaussian noise with
standard deviation . The frequency spacing is 50%
below the classic resolution limit given by the inverse of
the time series length. The periodogram of the time series is
shown in Fig. 1. The length of the time series is not sufficient
to resolve both harmonics. The periodogram is dominated
by sidelobes that mask the signals. In Fig. 2, we show the
power spectrum using the CG model after nine iterations. The
parameter was assumed to be known, and was obtained
using the chi-squared criterion. Fig. 3 portrays the power
spectrum versus the iteration number. The initial spectrum,
with , corresponds to the periodogram of the finite
length time series. In each iteration, sidelobes are progressively
diminished, and the spectral peaks are enhanced until the
harmonics are precisely recovered. The extended time series
at each iteration are shown in Fig. 4. The first time series
corresponds to the original data, and it is easy to see that the
resolution is enhanced as a consequence of the extension we
obtain.
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Fig. 3. Power spectra versus iteration number. The iteration� = 0 corre-
sponds to the periodogram of the finite length time series, which is also plotted
in Fig. 1. The final spectrum (� = 9) is also plotted in Fig. 2.

Fig. 4. Time series reconstructed from the DFT versus number of iterations.
The first time series (� = 0) corresponds to the original data. The associated
spectra are shown in Fig. 3.

B. The Kay and Marple (KM) Example [4]

We illustrate the performance of our algorithm by applica-
tion to the well known KM data set. The results of 11 spectral
estimators that have been applied to this data set by Kay and
Marple are shown in [4, Fig. 16]. These data constitute an
important benchmark in testing the performance of different
spectral estimators. The data consist of 64 samples that de-
scribe a pair of unit amplitude harmonics with frequencies
of 0.2 and 0.21 Hz, a third harmonic with an amplitude of
0.1 (20 dB down) at 0.1 Hz, and a continuous noise process

Fig. 5. Periodogram of the Kay and Marple [4] data set.

Fig. 6. High-resolution spectral estimate of the Kay and Marple [4] data set
computed with the Cauchy–Gauss model.

in the upper band centered at about 0.35 Hz, where it rises
to about 15 dB below the pair of unit amplitude signals.
Fig. 5 illustrates the usual periodogram of the data, and Fig. 6
illustrates the PSD estimated with our algorithm using 2048
frequency samples. The parameter was set to zero since
we are fitting the data exactly.

It is easy to see that the method enables us to perfectly
resolve the harmonic components, but the broad part of the
spectrum is incorrectly replaced by a number of distinct
spectral lines (which do, however, outline the shape of the
continuous noise spectrum). This problem is also encountered
in the high-resolution parametric spectral estimators discussed
by Kay and Marple [4]. This is not to say that our approach
is doomed to failure, the phenomenon being simply a conse-
quence of using a norm that mimics a sparse distribution of
spectral amplitudes.

Of the estimators tested in [4], the Hildebrand–Prony
method, which is a variant of Prony’s approach for real
undamped sinusoids in noise [2], provides the most accurate
representation of the frequencies and power of the three
harmonics. Like our approach, Prony’s method does not
require autocorrelation estimates. It does, however, require
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the selection of the correct order of the input process, which
can be half the data length, and may result in poor estimates if
the order is estimated incorrectly. For the harmonic part of the
process, our approach yields a resolution accuracy comparable
with Prony’s approach. If is increased, the broad part of the
spectrum can be partly rejected. Unfortunately, this can lead
to misleading results since small amplitudes might be rejected.

C. Spatio-Temporal Spectrum of Signals
Received by a Passive Array

We now apply the algorithm to estimate the spatio-temporal
spectrum of a signal received by a passive array of receivers.
This problem frequently arises in radar, sonar, and seismic
processing. The goal is to estimate the direction of arrival and
the temporal spectral signature of a set of sources impinging
from different angles on a uniform array of receivers. In
seismology, the problem has been intensively studied to detect
plane-wave signals and estimate the slowness vector. In this
paper, we present a narrowband example, but the problem can
be easily extended to broadband signals. We are also assuming
that the array of receivers is linear, but the method can be
easily generalized to any real distribution of receivers.

Instead of developing a two-dimensional (2-D) version of
our method, we prefer to present a hybrid procedure based on
standard Fourier analysis in the temporal variable, whereas for
the spatial variable, we invert the wavenumber using the CG
regularization. Usually, the length of the temporal window
is sufficient to achieve high resolution with simple methods
based on standard Fourier analysis, whereas it is the aperture of
the array that limits the spatial resolution. The 2-D algorithm
works as follows.

1) Each record is transformed to the frequency offset do-
main using the FFT.

2) High-resolution analysis is performed at each frequency
that comprises the signal.

3) The amplitude in the – space is plotted to identify the
spatio-temporal structure of each source.

4) Alternatively, the data outside the original aperture may
be extrapolated to simulate a longer array, and any 2-D
spectral technique may be used in conjunction with the
extended data set.

The method was tested with a simulated array of 10 equally
spaced receivers. We modeled three sinusoids with unit am-
plitude and with normalized wavenumbers of 0.20, 0.25, and

0.25 units and normalized frequencies of 0.20, 0.20, and 0.35
units, respectively. The temporal extension of each channel is
100 samples. Gaussian noise with standard deviation

was added to the composite record, and each channel
was tapered with a Hamming window. The spatio-temporal
spectrum computed using the periodogram is illustrated in
Fig. 7. The contour lines correspond to normalized amplitudes
ranging from 0 to 40 db with an interval of 5 db. The–
plane is dominated by sidelobes due to truncation in space
and time. This is more evident for the wavenumber since the
aperture of the array is one order smaller that the length of the
time series. The data set was then processed with the hybrid
procedure based on the CG model. The result is portrayed in

Fig. 7. Conventionalf–k plane of three narrowband waves recorded by an
array of ten receivers. The panel is dominated by sidelobes that mask the
signals.

Fig. 8. High-resolutionf–k panel estimated with the Cauchy–Gauss model.
Sidelobes are diminished, and consequently, we can clearly recognize the
spectral signature of each wave.

Fig. 8. There is a clear enhancement of the spatial resolution.
In order to obtain such a resolution with a standard–
analysis, the required aperture must be at least 10 times larger
than the actual aperture.

D. Application to Unevenly Sampled Data and to Gap Filling

Two important problems in time series analysis are spectral
estimation of unevenly sampled data and gap filling. We show
in this section that our algorithm may be used to cope with
both problems. For irregular data, the vector of observation
in (4) contains the amplitude of the time series at position

, and the Fourier kernel is written as

(29)

The frequency axis is discretized at constant rate as in the
previous analysis. Notice that the matrix in (22) pos-
sesses Hermitian symmetry but is not Toeplitz. The resampling
and/or gap filling is accomplished by the following scheme.
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Fig. 9. (Top) Synthetic time series; the series contains two unit amplitude
harmonics of frequencies 0.795 and 0.954 Hz, respectively; (second) Gapped
time series; (third) Reconstructed time series using the Cauchy–Gauss DFT;
(bottom) Error sequence obtained subtracting (third) from (top).

1) Select the proper Nyquist frequency, and define the
number of samples of the frequency axis.

2) Form and , allocating only the times corresponding
to actual observations.

3) Iteratively retrieve the DFT using the Cauchy–Gauss
regularization. At this stage, an estimate of the spectrum
may also be computed.

4) Apply the inverse DFT transformation to compute a time
series sampled at regular intervals and/or to fill the gaps.

The top of Fig. 9 portrays a time series that consists of 400
samples. There are two harmonics of unit amplitude, which are
located at 0.795 and 0.954 Hz. The time series is contaminated
with Gaussian noise with 0.2. Three segments are
extracted from the time series to produce the gapped data (see
the second level of Fig. 9). The first segment has 20 samples,
and the second and the third have 40 samples each. We recall
that the gaps in the figure are not treated as zeros. They are
simply not considered in the inversion. We use the CG DFT
to estimate the power spectrum of the gapped data, which is
shown in Fig. 10. The DFT is also used to reconstruct the
time series. The gaps represent 75% of the total length of the
reconstructed time series. The hyperparameters of the problem
are chosen to yield . The third level of Fig. 9 shows
the reconstruction after ten iterations of our algorithm. Finally,
the bottom of Fig. 9 shows the difference between the original
synthetic time series and the reconstruction using the CG DFT.
This is also an estimate of the noise sequence used in the
synthetic time series.

VI. DISCUSSION AND CONCLUDING REMARKS

The high-resolution technique for the estimation of the
power spectrum presented in this paper and the prediction of
the time series is based on the application of an algorithm that

Fig. 10. Power spectrum of the gapped time series computed using the
Cauchy–Gauss model.

seeks a sparse solution to the ubiquitous problem of spectral
estimation from a finite set of data. What makes the algorithm
very attractive is that the sparseness measure is minimized sub-
ject to data constraints, and therefore, phase information is also
recovered and is used in the extrapolation of the signal outside
the original window, or aperture, depending on the problem.

The present algorithm is best suited to the analysis of
undamped harmonic signals. It is a spectral line estimate;
therefore, just as in the case of the Hildebrand–Prony estima-
tor, the broadband process is less well modeled. However, we
believe that the present approach obtains a result that achieves
a good compromise between an accurate determination of the
harmonic components and a measure of the power present
in the stochastic component. Like the Hildebrand–Prony es-
timator, our algorithm does not require autocorrelation lag
estimates but, unlike the Hildebrand–Prony approach, our
method also does not require thea priori determination of
the order of the process.

The hybrid technique developed to retrieve the spatio-
temporal signature of spatial signals offers an efficient alterna-
tive to overcome aperture artifacts in short arrays. When the
data are sampled at a constant rate, the algorithm is very fast
since Levinson’s recursion is applied.

Finally, we point out that the CG DFT can also be applied
to retrieve harmonics from irregularly sampled time series.
A byproduct of the technique is a time series resampled at
constant rate that is obtained from the DFT.

APPENDIX

PROOF OF (10) AND (18)

Using the rules for differentiation of a quadratic form by a
complex vector, we have

(A1)

which, after equating to zero, leads to

(A2)

where . Finally, the solution is given by

(A3)

which is (10).
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When the Cauchy prior is adopted, we equate the derivatives
of the cost function (16) to zero

(A4)

To evaluate the derivative of the regularization term ,
for simplicity, we compute the derivative with respect to the
elements of the vector

(A5)

Writing (A5) in matrix form, we have

(A6)

Combining (A4) and (A6), we obtain, after equating (A4) to
zero

(A7)

which is equivalent to (18) and solved iteratively, as discussed
in Section III.
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