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Minimum weighted norm interpolation of seismic records

Bin Liu1 and Mauricio D. Sacchi1

ABSTRACT

In seismic data processing, we often need to interpo-
late and extrapolate data at missing spatial locations. The
reconstruction problem can be posed as an inverse prob-
lem where, from inadequate and incomplete data, we at-
tempt to reconstruct the seismic wavefield at locations
where measurements were not acquired.

We propose a wavefield reconstruction scheme for
spatially band-limited signals. The method entails solv-
ing an inverse problem where a wavenumber-domain
regularization term is included. The regularization term
constrains the solution to be spatially band-limited and
imposes a prior spectral shape. The numerical algorithm
is quite efficient since the method of conjugate gradients
in conjunction with fast matrix–vector multiplications,
implemented via the fast Fourier transform (FFT), is
adopted. The algorithm can be used to perform multi-
dimensional reconstruction in any spatial domain.

INTRODUCTION

The seismic data reconstruction problem arises in many pro-
cessing steps that require regular sampling. Different methods
have been proposed: for example, prediction error filtering
interpolation (Spitz, 1991; Claerbout, 1992), wave equation-
based interpolation (Ronen, 1987), and Fourier reconstruc-
tion (Sacchi and Ulrych, 1996; Cary, 1997; Hindriks et al.,
1997; Sacchi et al., 1998; Duijndam et al., 1999; Zwartjes and
Duijndam, 2000). Among those methods, Fourier-based re-
construction starts by posing the interpolation/extrapolation
problem as an inverse problem where, from inadequate and
incomplete data, one attempts to recover the discrete Fourier
transform of the seismic wavefield.

Inverse problems are known to be ill posed and require
regularization to obtain unique and stable solutions. Criteria
to choose a suitable regularization strategy in the context of
interpolation and extrapolation are discussed by several re-
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searchers (Cabrera and Parks, 1991; Sacchi and Ulrych, 1996;
Hindriks et al., 1997; Sacchi et al., 1998; Duijndam et al., 1999;
Zwartjes and Duijndam, 2000). For example, minimum norm
spectral regularization can be used when we assume that seis-
mic data are band-limited in the spatial wavenumber domain
(Duijndam et al., 1999). Similarly, a regularization derived us-
ing the Cauchy criterion can be used to obtain a high-resolution
(sparse) discrete Fourier transform that can synthesize the data
at new spatial positions (Sacchi and Ulrych, 1996; Sacchi et al.,
1998; Zwartjes and Duijndam, 2000). The sparse spectrum as-
sumption is appropriate for data that consist of a superposition
of a few plane waves (Sacchi and Ulrych, 1996). Processing
the input data in windows is often necessary when assuming a
sparse spectrum model. However, an interpolation scheme that
operates on small windows might not be optimal for multidi-
mensional data reconstruction in the presence of large portions
of missing data.

In this paper we introduce a minimum weighted norm inter-
polation (MWNI) algorithm to perform multidimensional re-
construction of seismic wavefields. In particular, we minimize
a wavenumber weighted norm that lets us incorporate a prior
spectral signature of the unknown wavefield. The procedure is
an extension of the adaptive frequency-domain weighted norm
scheme proposed by Cabrera and Parks (1991) to extrapolate
time series. Our work adapts the Cabrera and Parks (1991)
method to the seismic data reconstruction problem. We also
extend the problem to the multidimensional case. In addition,
we avoid direct inversion methods and opt for a more efficient
optimization scheme based on the method of conjugate gradi-
ents with preconditioning.

Numerical examples with synthetic and field data demon-
strate the merits of the proposed interpolation scheme.

INTERPOLATION OF BAND-LIMITED DATA

Basic definitions

We start our analysis with a 1D interpolation problem. The
extension to higher dimensions is proposed in the next section.
By 1D interpolation, we understand interpolation in the f –x
domain along the spatial dimension x. In other words, a seismic
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gather in the t–x domain is first transformed to the frequency
domain and then interpolation is carried out along the spatial
dimension x for each temporal frequency f .

We denote x as the length-M vector of data sampled on a reg-
ular grid x1, x2, x3, . . . , xM . The observations are given by the
elements of the vector y= [xn(1), xn(2), xn(3), . . . , xn(N)]T , where
the set N ={n(1), n(2), n(3), . . . ,n(N)} indicates the position
of the known samples or observations. We now define the sam-
pling matrix T with elements Ti, j = δn(i ), j , where δ indicates
the Kronecker operator. It is quite simple to show that the com-
plete data and the observations are connected by the following
linear system:

y = Tx. (1)

For example, let us assume the complete data set consists of
M = 5 consecutive samples, or x= [x1, x2, x3, x4, x5]T ; the ob-
servations (available data) are given by samples at positions
N ={2, 3, 5}, or y= [x2, x3, x5]T . Then equation 1 becomes

x2

x3

x5

 =
0 1 0 0 0

0 0 1 0 0

0 0 0 0 1




x1

x2

x3

x4

x5

 . (2)

Note that the sampling operator T has the following property:

TTT = IN, (3)

where IN denotes the N× N identity matrix. In addition,
TT T 6= IM . We also define the discrete Fourier transform (DFT)
and the inverse discrete Fourier transform (IDFT) respectively,
as follows:

Xk = 1√
M

M∑
m=1

xme−i 2π(m− 1)(k− 1) /M ,

k = 1, . . . ,M, (4)

xm = 1√
M

M∑
k=1

Xkei 2π(m− 1)(k− 1) /M ,

m= 1, . . . ,M. (5)

We use the following compact notation for the DFT and IDFT,
respectively:

X = Fx, (6)

x = FH X, (7)

where the superscript H denotes the complex conjugate trans-
pose. Notice that F is the DFT unitary matrix whose inverse is
given by F−1=FH .

Minimum weighted norm inversion of the sampling
operator

The signal reconstruction or interpolation problem given by
equation 1 entails solving an underdetermined system of equa-
tions (more unknowns than observations). It is clear that the
problem does not have a unique solution. In general, one way

of solving this type of problem is by restricting the class of
solutions through providing suitable prior information.

Let us continue the analysis by saying that among all the
possible solutions, we seek a solution that minimizes a model
norm. In the absence of errors, the inversion can be reduced to
solving the following constrained minimization problem:

Minimize ‖x‖2
W

Subject to Tx = y,

where ‖.‖W indicates a weighted norm. Following Cabrera
and Parks (1991), we select the following wavenumber-domain
norm:

‖x‖2
W =

∑
k∈K

X∗k Xk

P2
k

, (8)

where P2
k are spectral domain weights with support and shape

similar to those of the signal to interpolate. The set of indexes
K indicates the region of spectral support of the signal. It is
understood that Pk 6= 0 for k∈K. The coefficient Pk represents
the spectral power at wavenumber index k.

We now introduce a diagonal matrix Λ with elements given
by

3k =
{

P2
k , k ∈ K

0, k 6∈ K . (9)

Similarly, we define the pseudoinverse of the diagonal matrix
Λ, as the matrix Λ† with elements given by

3
†
k =

{
P−2

k , k ∈ K
0, k 6∈ K . (10)

The wavenumber-domain norm can now be expressed as

‖x‖2
W = XH Λ†X. (11)

After combining equations 7 and 8, we arrive at the following
expression:

‖x‖2
W = xH FHΛ†Fx

= xH Q†x, (12)

where Q†=FH Λ†F is a circulant matrix (Strang, 1986). Sim-
ilarly, we define the circulant matrix Q=FH ΛF. Notice that
both Q and Q† are band-limiting operators. In other words,
they annihilate any spectral component k 6∈K.

The minimum norm solution is found by minimizing the fol-
lowing cost function:

J = bT (Tx− y)+ ‖x‖2
W .

In the above equation, b denotes the vector of Lagrange mul-
tipliers. Minimizing J with respect to x subject to Tx − y= 0
leads to the following solution:

x̂ = QTT (TQTT )−1y. (13)

In the previous derivation we assume that the matrix TQTT is
invertible. If this is not the case, the inverse can be replaced by
the Moore-Penrose pseudoinverse (Cabrera and Parks, 1991).

The above solution is designated as MWNI. We reserve the
name minimum norm interpolation (MNI) for the case where
Q is a band-pass filter with spectral weights P2

k = 1, k∈K. In
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other words, we constraint the solution to the class of band-
limited signals with spectral components in k∈K, and we make
no attempt to impose a prior spectral shape.

Let us consider the case when Q is an all-pass filtering ma-
trix with DFT coefficients3k= 1 for k= 1, . . . ,M . In this case,
Λ= I, and after invoking the orthonormality of the DFT oper-
ator we obtain the following expression:

x̂ = TT (TTT )−1y = TT y . (14)

In the toy example provided by equation 2, the minimum norm
solution becomes

x̂ = TT y =


0

x2

x3

0

x5

 . (15)

In other words, missing samples are filled in with zeros.

Inversion of T in the presence of noise

When the observations contain additive noise rather than
trying to fit exactly all of the observations, we attempt to fit the
observations in the least-squares sense. In this case we min-
imize a cost function that combines a data misfit function in
conjunction with the model norm:

J = ‖Tx− y‖2 + ρ2‖x‖2
W , (16)

where ρ2 is the trade-off parameter of the problem. Notice that
minimizing J is equivalent to finding the least-squares solution
of the following overdetermined system of equations:(

T

ρW

)
x ≈

(
y

0

)
, (17)

where, according to our previous definitions, the matrix of
weights W is given by

W = Λ†1/2 F. (18)

Unfortunately, the augmented matrix of the problem is rank
deficient; therefore, equation 17 does not have a unique solu-
tion. The latter can be solved by choosing, among all possible
least-squares solutions, the one with the minimum Euclidean
norm. This can be done with the aid of the singular value de-
composition (SVD) of the augmented matrix. Alternatively, we
can use the method of conjugate gradients. For rank-deficient
problems, the solution to which the conjugate gradient method
converges depends upon the initial approximation adopted. If
the initial approximation is chosen to be x= 0, then the con-
jugate gradient converges to the minimum-norm least-squares
solution (Hestenes, 1975). One advantage of using the con-
jugate gradient method is that the computational cost of the
algorithm heavily depends on matrix–vector multiplications.
These operations can be performed efficiently using the fast
Fourier transform (FFT).

In our numerical implementation, equation 17 is modified
with the following change of variable: z=Wx. The augmented

system becomes (
TW†

ρ I

)
z ≈

(
y

0

)
. (19)

The trade-off parameter can be set to ρ= 0, and the number
of iterations in the conjugate gradient method plays the role
of regularization parameter (Hansen, 1998). We end up solv-
ing TW†z≈ y and stopping the algorithm when a maximum
number of iterations is reached or a desired misfit is achieved:
‖Tx− y‖< tolerance, tolerance= 10−3− 10−5. We find that the
conjugate gradient method often converges in less than 15 it-
erations.

At this point a few comments are in order. The transition
from equation 17 to equation 19 is only valid for a full-rank
matrix W. The fact that we are solving for a band-limited solu-
tion (k∈K), however, permits us to claim that solving equation
19 is equivalent to solving equation 17 (Nichols, 1997).

It is important to clarify that the proposed algorithm dif-
fers from the one proposed by Sacchi and Ulrych (1996) to
invert the coefficient of the DFT using sparseness constraints.
First of all, our algorithm does not assume a sparse distribution
of spectral amplitudes. The latter is only valid for estimating
the DFT of a process that consists of a finite number of spec-
tral lines (Sacchi et al. 1998). To be more specific, the high-
resolution Fourier transform (HRFT) proposed by Sacchi and
Ulrych (1996) utilizes a Cauchy regularization criterion of the
form

‖x‖c =
∑

k

ln
(

1+ Xk X∗k
σ 2

c

)
, (20)

where σc is the scale parameter of the Cauchy norm.
Notice the difference between the above norm (equation 20)

and the norm utilized in this paper (equation 8). It is very im-
portant to stress that the Cauchy criterion was proposed as a
means of estimating sparse (high-resolution) spectral estima-
tors for waveforms that can be approximated by plane waves.
In this case, a sparse spectrum is the appropriate model for
data that consist of a superposition of a few plane waves. In
this paper, however, we propose a more general norm that is
capable of handling nonsparse spectral models. The new ap-
proach is particularly relevant for multidimensional seismic
data, where the common assumption of a local superposition
of a few plane waves is suboptimal. Windowing can be used to
validate the nonsparse spectral model. However, we prefer an
alternative procedure where sparseness is not invoked. It is true
that both MWNI and HRFT lead to very similar algorithms.
However, in HRFT the amplitude of the Fourier transform
|Xk|2 plays the role of a data-dependent diagonal regulariza-
tion matrix [see equation 19 in Sacchi and Ulrych (1996)]. In the
MWNI formulation, on the other hand, the matrix of weights
is derived from the power spectrum of the data using a non-
parametric spectral estimator. In the next section we propose
a procedure to estimate the power spectrum of the unknown
data.

It is also important to clarify that the present work does
not attempt to invert the nonuniform DFT (Hindriks et al.,
1997). Our implementation utilizes FFTs; therefore, an impor-
tant gain in efficiency is achieved when interpolating data that
depend on more than one spatial dimension.
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Adaptive estimation of the weighting operator

To obtain the matrix of weights W, in practice one should
know the power spectrum of the complete data x. Unfortu-
nately, the complete data x are the unknowns of our problem.
The latter can be overcome by defining an iterative scheme
to bootstrap the spectral weights from the data. Our numeri-
cal implementation uses the smooth periodogram of the data
(Bingham et al., 1967):

P2
k =

{∑L
l =−L wl |Xk−l |2, k ∈ K,

0, k 6∈ K , (21)

wherewl is a smoothing window of length 2L + 1. We initialize
the algorithm with the band-limiting operator with spectral
weights P2

k = 1, k∈K; we solve for x and use the solution to
recompute P2

k using equation 21.
Alternatively, it is possible to adopt a noniterative strat-

egy similar to the one proposed by Herrmann et al. (2000)
to compute the high-resolution parabolic Radon transform.
The method is well documented in Hugonnet et al. (2001). The
power spectrum P2

k required to interpolate spatial data at a
temporal frequency f can be estimated from the already in-
terpolated data at frequency f −1 f . Such a scheme is often
effective in dealing with situations where the data exhibit a
mild degree of spatial aliasing at high frequencies.

In particular, in situations with aliasing produced by non-
conflicting dips, the weighting operator computed from the
nonaliased low frequencies attenuates the aliasing that might
arise at high frequencies. Clearly, the assumption at the time of
adopting such scheme is that the power spectrum of the data
at frequency f − 1 f is similar in shape to the power spectrum
of the data at frequency f . This assumption is often valid when
1 f is small. This is achieved, in general, by padding the data
with zeros before applying the Fourier transform.

1D reconstruction examples

Reconstruction along one spatial coordinate is illustrated
with a synthetic shot gather. Figure 1a shows a complete shot
gather with a small amount of random noise. The synthetic data
were modeled with a ray-tracing algorithm for laterally invari-
ant media; the amplitude variation with offset (AVO) effect
is added using Shuey’s equation (Shuey, 1987). A total of 18
traces were removed from the original data, including some
near-offset traces (Figure 1b). The incomplete data set is used
as input for our reconstruction algorithm. The data set is first
transformed to the temporal frequency domain. The recon-
struction is then performed along the spatial coordinate (re-
ceiver position) for each temporal frequency. Figure 1c shows
the reconstruction using the MWNI algorithm. The modified
periodogram (equation 21) is used to iteratively estimate the
matrix of weights. The reconstruction error is portrayed in
Figure 1d.

For comparison, we also tried to reconstruct the data using
the HRFT algorithm (Sacchi and Ulrych, 1996) and the
minimum norm interpolation (MNI) algorithm. Note that in
the HRFT example we used all of the traces that compose
the synthetic shot gather (no attempt at data windowing was
made). The MNI algorithm had difficulties when interpolating
large gaps. The MWNI and HRFT algorithms both managed to

retrieve comparable interpolation results. However, numerical
experiments have shown that the HRFT tends to produce
spectral models that are too sparse and tends to produce large
interpolation errors when dealing with data that do not fit the
sparse spectral model (seismic events with curvature in t–x).

We also compare the reconstructed power spectrum at the
temporal frequency component f = 15.6 Hz for the MWNI,
HRFT, and MNI methods. Figure 2a shows the power spectrum
of the reconstructed data using the MWNI method. Figure 2b
portrays the power spectrum of the reconstructed data us-
ing the HRFT approach. The spectrum of the reconstructed
data using the MNI method is portrayed in Figure 2c. Finally,
the power spectrum of the true (complete) data is displayed
in Figure 2d. Notice the good agreement of the spectral sig-
natures of the interpolated and original data in Figures 2a
and 2d. The spectrum obtained using the HRFT approach
(Figure 2b) is better than the spectrum obtained using the MNI
method (Figure 2c;) however, as we have already mentioned,

Figure 1. (a) Original synthetic shot gather. (b) Incomplete shot
gather obtained by removing 18 traces from the complete shot
gather in (a). (c) Reconstruction using the MWNI algorithm.
(d) Reconstruction error after interpolation with the MWNI
method. (e) Reconstruction using the HRFT approach. (f) Re-
construction error after interpolation with the HRFT method.
(g) Reconstruction using MNI. (h) Reconstruction error after
interpolation with the MNI method. Error panels (d), (f), and
(h) are multiplied by two to better depict differences.
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interpolation with the HRFT approach tends to produce spec-
tral estimates that are too sparse.

It is important to stress that for the MNI method we
have used a frequency-dependent bandwidth. The maximum
wavenumber at frequency f is estimated using the formula
kmax= f/vmin, where vmin is the minimum apparent velocity of
the data (Duijndam et al. 1999).

The interpolation of a real marine shot gather using the
MWNI method is portrayed in Figure 3. Figure 3a shows the
marine shot gather before interpolation. The interpolated data
at twice the original sample rate is portrayed in Figure 3b.
In this example, we have determined the spectral weights us-
ing the noniterative scheme described above. The noniterative
scheme is much faster than the iterative approach. Therefore,
the noniterative scheme is utilized in all of the remaining ex-
amples. Our tests show minimal difference between these two
approaches.

2D SPATIAL INTERPOLATION

The 1D interpolation algorithm proposed in the previous
section can be extended to two dimensions by using Kroneker
products (Davis, 1979; Jain and Ranganath, 1981). First, we
denote the lexicographic ordering of the elements of the 2D
Mu×Mv complete data matrix along two arbitrary spatial di-
mensions u and v as the vector x. Similarly, the observations
(obtained after binning the data) can also be organized in a
data vector y. Again, we can relate the complete data in the
regular grid to the observations with a simple mapping of the
form Tx= y. The band-limiting operator W is now defined in
terms of the following operations:

W = Λ†1/2(Fu ⊗ Fv), (22)

Figure 2. Power spectra at frequency component f = 15.6 Hz
for data shown in Figure 1. (a) Power spectrum of the recon-
structed data using the MWNI method. (b) Power spectrum of
the reconstructed data using the HRFT approach. (c) Power
spectrum of the reconstructed data using the MNI method.
(d) Power spectrum of the original (complete) data.

where Fu and Fv denote 1D DFTs along dimensions u and v,
respectively. The Kroneker product Fu⊗Fv is the 2D DFT ma-
trix operating on the vectorized data. Similarly, the 2D power
spectrum of the data (in vectorized form) is distributed along
the diagonal of 3. With these new definitions, we can easily
extend the conjugate gradient algorithm discussed in a pre-
ceding section to the 2D case. It is clear that this scheme
can be extended to interpolate three or more spatial variables
simultaneously.

Interpolation in source-receiver coordinates

The effectiveness of the 2D MWNI method is first demon-
strated using the Marmousi data set. The spatial coordinates to
interpolate are source and receiver positions. It is important to
stress that similar results could be obtained by interpolating in
midpoint-offset coordinates. The input data are a subset of the
Marmousi data set that consists of 24 shots with 96 receiver po-
sitions per shot. The original shots and receivers were sampled
every 25 m. We simulate a survey with shot and receiver inter-
vals of 75 m. In other words, 8 shots with 36 receivers per shot
were extracted from the data and input to our reconstruction
algorithm.

Figure 4 shows the shot-receiver distribution of the observa-
tions and positions to reconstruct. The original data, the input
data, the reconstructed data, and the reconstruction error for
three shots in the survey (source positions: 3075, 3100, and

Figure 3. (a) Incomplete data from a real marine shot gather.
(b) Interpolated data using the MWNI method.
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Figure 4. Source and receiver location map for a subset of the
Marmousi model.

Figure 5. (a) Three shots extracted from the Marmousi data set. (b) Decimated shots. (c) Reconstructed data using the 2D MWNI
algorithm. (d) Error panel.

3125 m) are shown in Figures 5a–d, respectively. The f –k spec-
tra of the original, decimated, and reconstructed shot gathers
at 3125 m are shown in Figures 6a–c, respectively.

3D poststack seismic data reconstruction

We also illustrate the reconstruction of a real 3D poststack
data cube using the 2D MWNI algorithm. In this case the in-
terpolation is carried out along the inline and crossline co-
ordinates. Figure 7a shows a complete 3D poststack data cube
that consists of 51 inlines and 31 crosslines. The decimated
poststack data cube (Figure 7b) is obtained by removing every
second trace along both the inline and crossline directions. The
incomplete data cube is used as input to the MWNI reconstruc-
tion algorithm. Figure 7c shows the cube after reconstruction.
Detailed panels showing the true complete data, the recon-
structed data, and the reconstruction error for inline 39 and
crossline 19 are provided in Figures 8 and 9, respectively. No-
tice that the proposed interpolation has also attenuated the
random noise. The degree of noise attenuation versus fidelity
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of the reconstruction is regulated by the number of iterations
of the conjugate gradient solver.

CONCLUSIONS

In this paper, we have formulated a band-limited data recon-
struction algorithm that can incorporate prior spectral weights
to control the bandwidth and the spectral shape of the recon-
structed data. The MWNI method has been shown to perform
better than standard MNI when dealing with large data gaps.

Figure 6. (a) The f –k spectrum of the original shot gather at
3125 m. (b) The f –k spectrum of the same shot gather after
decimation. (c) The f –k spectrum of the same shot gather after
interpolation.

We have also discussed the differences between MWNI and
data reconstruction via HRFT (Sacchi and Ulrych, 1996). The
MWNI method avoids the sparse spectrum assumption; this is
an important advantage when processing seismic data that do
not satisfy the sparse spectrum model. It is clear that the sparse
spectrum assumption is only valid for data that consist of a few

Figure 7. (a) A complete 3D poststack data cube. (b) Deci-
mated cube; every second line is removed. (c) Reconstructed
cube using the MWNI method.
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plane waves (linear events in t–x). This is a valid assumption
when reconstructing data in small windows. However, an in-
terpolation scheme that operates on small windows might not
be optimal for data reconstruction in the presence of large
gaps.

In the presence of additive noise, a least-squares minimum
weighted norm solution can be computed efficiently using the

method of conjugate gradients. It is important to stress that the
computational cost of the conjugate gradient method heavily
depends on matrix–vector multiplications. These operations
can be implemented efficiently using the FFT. Additional effi-
ciency can be obtained by truncating the number of conjugate
gradient iterations. As pointed out by Hansen (1998), the num-
ber of iterations plays a role similar to a trade-off parameter.

Figure 8. (a) Original data along inline 39 (line A, Figure 7b). (b) Reconstructed data using the
MWNI method. (c) Reconstruction error.

Figure 9. (a) Original data along crossline 19 (line B, Figure 7b). (b) Reconstructed data using the
MWNI method. (c) Reconstruction error.
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Consequently, by truncating the number of iterations, additive
noise can be attenuated.The computational cost of the method
makes it attractive for multidimensional interpolation.

Fourier interpolation methods can handle crossing events in
as much as the data are not aliased. Although we did not show
numerical results highlighting the interpolations with conflict-
ing dips, our method may not be able to handle multiple cross-
ing events if the data are aliased. This is significant because
seismic data interpolation often involves spatially aliased data
and multiple crossing events.

ACKNOWLEDGMENTS

The Signal Analysis and Imaging Group at the University of
Alberta would like to acknowledge financial support from the
following companies: Geo-X Ltd., Encana Ltd., Veritas Geo-
services, and the Schlumberger Foundation. This research has
also been supported by the Natural Sciences and Engineering
Research Council of Canada and the Alberta Department of
Energy.

We also appreciate the valuable comments and suggestions
from the reviewers of Geophysics and Assistant Editor Yonghe
Sun.

REFERENCES

Bingham, C., M. D. Godfrey, and J. W. Tukey, 1967, Modern techniques
of power spectrum estimation: IEEE Transactions on Audio and
Electroacoustics, 15, No. 2, 56–66.

Cabrera, S. D., and T. W. Parks, 1991, Extrapolation and spectrum
estimation with iterative weighted norm modification: IEEE Trans-
actions in Signal Processing, 39, 842–850.

Cary, P. W., 1997, 3-D stacking of irregularly sampled data by wavefield
reconstruction: 67th Annual International Meeting, SEG, Expanded
Abstracts, 1104–1107.

Claerbout, J. F., 1992, Earth soundings analysis: Processing versus in-
version: Blackwell Scientific Publications, Inc.

Davis, P. J., 1979, Circulant matrices: John Wiley & Sons, Inc.
Duijndam, A. J. W., M. Schonewille, and K. Hindriks, 1999, Recon-

struction of seismic signals, irregularly sampled along one spatial
direction: Geophysics, 64, 524–538.

Hansen, P. C., 1998, Rank-deficient and discrete ill-posed problems:
Numerical aspects of linear inversion: SIAM Monographs on Math-
ematical Modeling and Computation v. 4.

Herrmann, P., T. Mojesky, M. Magesan, and P. Hugonnet, 2000, De-
aliased, high-resolution Radon transforms: 70th Annual Interna-
tional Meeting, SEG, Expanded Abstracts, 1953–1956.

Hestenes, M. R., 1975, Pseudoinverse and conjugate gradients: Asso-
ciation for Computing machinery, 18, No. 1, 40–43.

Hindriks, K., A. J. W. Duijndam, and M. A. Schonewille, 1997, Re-
construction of two-dimensional irregularly sampled wavefields:
67th Annual International Meeting, SEG, Expanded Abstracts,
1163–1166.

Hugonnet, P., P. Herrmann, and C. Ribeiro, 2001, High resolution
Radon—A review: 63rd Meeting,: European Association of Explo-
ration Geophysicists, Extended Abstracts, Session IM-2.

Jain, A. K., and S. Ranganath, 1981, Extrapolation algorithms for dis-
crete signals with application in spectrum estimation: IEEE Trans-
actions in Acoustics, Speech and Signal Processing, 29, 830–845.

Nichols, D., 1997, A simple example of a null space and how to modify
it: Stanford Exploration Project Report, 82, 182–192.

Ronen, J., 1987, Wave-equation trace interpolation: Geophysics, 52,
973–984.

Sacchi, M. D., and T. J. Ulrych, 1996, Estimation of the discrete
Fourier transform, a linear inversion approach: Geophysics, 61,
1128–1136.

Sacchi, M. D., T. J. Ulrych, and C. Walker, 1998, Interpolation and ex-
trapolation using a high-resolution discrete Fourier transform: IEEE
Transactions in Signal Processing, 46, 31–38.

Shuey, R. T., 1987, A simplification of the Zoeppritz equations: Geo-
physics, 50, 993–1014.

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geo-
physics, 56, 785–794.

Strang, G., 1986, Introduction to applied mathematics: Wellesley-
Cambridge Press.

Zwartjes, P. M., and A. J. W. Duijndam, 2000, Optimizing reconstruc-
tion for sparse spatial sampling: 70th Annual International Meeting,
SEG, Expanded Abstracts, 2162–2165.


